Livestock
Greenhouse
Gases:
Emission and
Options for Mitigation

Sunil Kumar Sirohi T.K. Walli Bhupinder Singh Nasib Singh

Contents

Fore	word	V
Prefa	ace	., vii
	of contributors	
	TION-A: LIVESTOCK AND THEIR CONTRIBUTION BAL WARMING	TC
1	Impact of Indian livestock on environment and strategies to mitigate greenhouse gases from ruminants to reduce global warming	1
2	Contribution of Ruminants towards global warming in India vis a vis the world	15
3	Effect of global climate change on livestock productivity S. V. Singh, R.C. Upadhyay, Ashutosh, Beenam, Mangesh M. Vaidya	27
4	Impacts of climate change on animal functions and productivity R.C. Upadhyay, Smita Sirohi, Ashutosh, S.V. Singh, Prava Mayengbam, Dipak Banerjee, Rita Rani, Anil Kumar and Syma Ashraf	39
5	IPCC methodologies of enteric methane budget from livestock	55

	TION-B: DIVERSITY OF RUMEN MICROBES	
	Harnessing the diversity of rumen microbes using molecular approaches	65
7	Diversity and geographical distribution of rumen methanogens Prem Prashant Chaudhary, Sunil Kumar Sirohi and Haidar Ali Ahmed	83
8	Biochemistry, bioenergetics and genetics of methanogenesis in rumen methanogenic archaea	103
9	Diversity of rumen methanogens in dairy animals	121
	TION-C: NUTRITIONAL MANAGEMENT FOR TEMENT OF GHGs	
10	Mitigation options for enteric methane emissions from dairy animals	125
11	Dietary manipulation for minimizing methane production from dairy animals	143
12	Use of essential oils for methane mitigation from ruminants S.K. Tomar and S.M. Shete	153
13	Role of tannins and saponins in rumen methane reduction Raghavendra Bhatta	163
14	Use of alternate electron acceptors as feed additives to inhibit methanogenesis in rumen	171
15	Dietary lipids, protozoa and ruminal methane production Bhupinder Singh	177
16	Saponins as a promising agent for rumen methane mitigation Navneet Goel and Sunil Kumar Sirohi	213

17	Role of fats in dairy animals and their potential in methane mitigation	235
18	Plant bioactives as rumen fermentation modulators Poonam Pandey, Navneet Goel and Sunil Kumar Sirohi	257
19	Possibilities to mitigate methane emissions from dairy animals with acetogens and methane oxidizing microbes S.S. Kundu and Nisha Jha	285
20	Biological approaches for reducing methane generation in ruminant Anil Kumar Puniya, Sumit Singh Dagar, Sanjay Kumar and Sunil Kumar Sirohi	293
21	GHG emission from manure and the role of bypass protein feeding in reducing nitrogen excretion and improving its utilization in ruminants	301
22	Role of methane emitted by ruminants in global warming and its mitigation with plant secondary metabolites D.N. Kamra	317
23	Scope of greenhouse gases trading from livestock sector Smita Sirohi	331
	TION-D: IN VITRO FERMENTATION, RUMINANT IN D MOLECULAR METHODS	VIVO
24	Hungate roll tube method for culturing of rumen microbes Sumit Singh Dagar and Anil Kumar Puniya	341
25	In vitro fermentation techniques used to study the rumen ecosystem Brishketu Kumar, Poonam Pandey, Navneet Goel and Sunil Kumar Sirohi	351
26	In vivo methane estimation in ruminants using ventilated hood systems Raghavendra Bhatta, Tomoyuki Suzuki and Mitsunori Kurihara	367
27	Estimation of methane using sulphur hexafluoride (SF ₆) method Madhu Mohini and Sunil Kumar Sirohi	375

Contents / xvi

28	Isolation and maintenance of rumen microorganisms Prasanta Kumar Choudhury, Sumit Singh Dagar and Sunil Kumar Sirohi	3/9
29	Applications of molecular biology techniques in the study of rumen microbial diversity	393
	About the Editors	417

3.9

Section A

Livestock and their Contribution to Global Warming

Livestock 3 Greenhouse Gases:

Emission and Options for Mitigation

This book presents extensive and updated information about the current developments towards the abatement of methane and other greenhouse gases originated from livestock. Greenhouse gases such as methane and nitrous oxide contributed by livestock are of worldwide concern as these are responsible for global warming as well as animal productivity. Significant efforts have been made by the researcher in different parts of the world to understand the process and mechanisms of global warming with specific emphasis on methanogenesis. We have compiled the information on enteric methane and nitrous oxide production from dairy animals, its impact on global warming and strategies to mitigate these GHGs in a simple, illustrative, and coherent manner, so that students, scientists, academicians and others involved in animal nutrition and animal production science at national or international level will be benefitted. The book covers all aspects of role of ruminants in global warming, rumen microbial diversity, methanogenesis pathway and various biological and non-biological approaches to mitigate anthropogenic methane release. In the end book also covers a variety of techniques for measuring rumen fermentation parameters, culturing and maintenance of anaerobic rumen bacteria and fungi, methanogens, and latest molecular approaches to investigate the rumen microbial diversity and quantification of methanogens are also included. Editors believe that the book will be of immense help to the investigators involved in the field of animal nutrition.

SATISH SERIAL PUBLISHING HOUSE

403, Express Tower, Commercial Complex, Azadpur, Delhi - 110033 (India)

Phone: 011-27672852, Fax: 91-11-27672046

E-mail: info@satishserial.com, hkjain1975@yahoo.com

Website: www.satishserial.com

Rs.: 1450.00