nnovations and Strategies nprovements

a Y. Hester, Department of Animal Sciences, Purdue University, West Lafayette, IN, USA

and Strategies for Improvements examines the production of eggs from their development within n consumption. Chapters also address consumer acceptance, quality control, regulatory aspects, cost s, and research trends.

source of macro- and micronutrients, which are consumed not only by themselves but also within od products, such as pastas, cakes, and pastries. A wholesome, versatile food with a balanced array of ts, eggs are a staple of the human diet. Emerging strategies include improvements to the composition cation or biological enrichment of hen's feed with polyunsaturated fatty acids, antioxidants, vitamins, the other hand, eggs can also be a source of food-borne diseases or pollutants, which have effects not health but also on egg production and commercial viability.

nternational team of experts, *Egg Innovation and Strategies for Improvements* presents a unique biology and science of egg production, nutrient profiling, disease and modes for increasing the quality of eggs. Designed for poultry and food scientists, technologists, microbiologists, as well as ic health, and the food and egg industries, the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and also for increasing the book is valuable as an industrial reference and

e production and food science aspects of eggs and prevention of a broad range of microbial contaminants, as well as nonmicrobial contaminant

ytical techniques for practical application

roving the Safety and Quality of Eggs and Egg Products, Volume 1: Egg Chemistry, Production and 178-1845697549

et al., Improving the Safety and Quality of Eggs and Egg Products, Volume 2: Egg Safety and Nutritional \$57090720

Egg Innovations and Strategies for Improvements

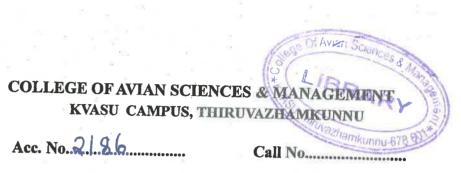
> Edited by Hester

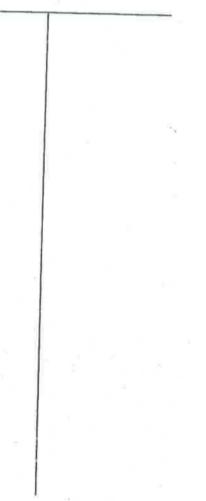
ACADEMIC PRESS

Egg Innovations and Strategies for Improvements

- Edited by Patricia Y. Hester

Acc. No. 2.1.8.6


ų.


This book should be returned on or before the date last given below.

1

2186.

Egg Innovations and Strategies for Improvements

Edited by

Patricia Y. Hester Department of Animal Sciences Purdue University, West Lafayette IN, United States

An imprint of Elsevier elsevier.com

ACADEMIC PRESS

Contents

Contributors

Section I Introduction

1. Chicken Eggs

James R. Chambers, Khalid Zaheer, Humayoun Akhtar and El-Sayed M. Abdel-Aal

Origin of the Egg Producing Chicken Management Systems for Egg Production Global Production and Consumption Egg Components Value for Human Nutrition and Health Manipulation of Egg Nutrients Measures to Ensure Egg Food Safety Measures to Maintain Egg Quality Challenges Conclusions References

2. Quail Eggs

Jennifer Arthur and Masoumeh Bejaei

Worldwide Production and Consumption Quail Species and Life Cycle Egg Characteristics Egg Production Common Disease and Food Safety Issues Enhancing Production and Egg Composition Strategies for Improvement Conclusions
Conclusions
References

3. Duck Eggs

Jennifer Arthur

Regional Preferences and Production Statistics	23
Duck Layer Breeds	23
Stages of Growth and Egg Production	24

Feed Require Duck Egg Phy Nutrient Con Production S^r Processed Du The Regulator Disease and I Strategies for Conclusions References

xvii

3

3 5

5

6

7

7

8

10

10

10

13

13 14

15 18

19

19

19 20

4. Guinea Fo Ostrich, ai

Dariusz Koko

Eggs in the H Guinea Fowl Goose Eggs Turkey Eggs Ostrich Eggs

Emu Eggs

Strategies fo Conclusions

References

Section II Management and Housing

5. Steroid H Balance: I Sex Ratio

Muhammad

Introduction Potential M Bias in Bin The Relation Sex Stero Relationshi

Stress, Co Paramete

ements	24
ysical Characteristics	25
nposition of Duck Eggs	26
iystems	26
uck Egg Products	28
ry Environment in the United States	29
Food Safety Issues	29
r Improvement	30
	30
	31

owl, Goose, Turkey, and Emu Eggs	
coszyński	
Human Diet	33
/l Eggs	33
	37
	38
\$	39
	40
or Improvement	41
s	41
	41

Iormones and Female Energy Relation to Offspring Primary	
)	
d Aamir Aslam and Henri Woelders	
n	47
lechanisms of Primary Sex Ratio	
rds	47
onship of Egg Sex with Gonadal	
oid Hormones	49
p of Egg Sex with Female Parental	
orticosterone, and Physical	
ers of the Egg	50

viii Contents

Strategies for Improvement	
Analytical Methods	
Conclusions	
References	

> > 85

6. Breeder Hen Influence on Nutrient Availability for the Embryo and Hatchling

Patricia Y. Hester

Nutrients Deposited in the Chicken Egg	55
Nutrient Assimilation into the Egg by the Breeder Hen	56
Nutrient Retrieval by the Embryo and Hatchling	57
Influence of Breeder Hen Diet on Nutrient	
Availabilty to the Embryo and Hatchling	59
Influence of Breeder Hen Condition and the	
Embryo's Metabolism on Nutrient Availabilty	61
Strategies for Improvement	62
Conclusions	62
References	62

7. Effect of Lighting and Photoperiod on Chicken Egg Production and Quality

00	
Grégoy Y. Bédécarrats and Charlene Hanlon	
Introduction	65
The Physiology: Overview of the Reproductive	
Axis and its Control by Light	65
Lighting Paradigms and Their Impact	
on Egg Laying	67
Light Spectrum	70
Lighting's Effect on Egg Weight and Quality	71
Lighting Effects on Hen Welfare	71
Strategies for Improvement	72
Analytical Methods to Assess Light Quality	73
Conclusions	73
References	73

8. Enrichments in Cages

Patricia Y. Hester

The Political Environment	
Europe	
South and Central America and Asia	
The United States	
The Nest Area	
Perches	
Scratch Pad and Foraging Area	
Nail Trimmers	
How Much Space do Hens Need	
in Large Enriched Cages?	

	Do Pullets Need Enrichments too? Strategies for Improvement Conclusions References	85 85 86 86
9.	Commercial Free-Range Egg Production Practices	
	Ruth Catriona Newberry	
	Introduction Defining Free-Range Free-Range Chicken Egg Production Methods Free-Range Chicken Egg Characteristics Free-Range Duck Egg Production Assessment of Free-Range Eggs Strategies for Improvement Analytical Methods Conclusions References	89 89 90 98 98 98 98 99 99 99
10.	Organic Farming and Mineral Content of Chicken Eggs	
	Kamil Küçükyılmaz and Mehmet Bozkurt	
	Introduction	103
	Mineral Content of Hen's Eggs and Factors Affecting its Nutritive Value Effect of Organic Rearing System on Egg	103
	Mineral Content	105
	Hazardous Heavy Metal Residues in Organic Rearing System	107
	Strategies for Improvement	108
	Analytical Methods	108
	Conclusions	109 109
	References	105
11	. Controlling Feather Pecking and Cannibalism in Egg Laying Flocks	
	Courtney Lynd Daigle	
	Cannibalism	111
	Feather Pecking Impact of Coping Style on Feather Pecking	112
	Behavior	113
	The Behavioral Phenotypes of Feather Pecking	114
	Risk Factors for Developing Feather Pecking	114
	The Importance of Litter in the Environment	114 115
	Access to Perches Feeding and Watering	115
	Use of Space	116
	Access to Outdoors and Range	116
	Lighting, Temperature, and Air Quality	117 117
	Environmental Enrichment	117

Applicability to Other Commercial Egg Laying Species Strategies for Improvement Analytical Methods to Assess Feather Pecking Behavior Conclusions	117 117 118 118	Antimicrobial Molecules and Their Mechanisms Future Challenges Conclusions Acknowledgments References	160 161 161 162 162
References	119	16 Shall Egg Pastourization	
Section III		16. Shell Egg Pasteurization	
Food Safety		Kevin M. Keener	
 12. Effects of Temperature and Storage Conditions on Eggs <i>Patricia Y. Hester</i> Introduction The Aging Egg The Aging Hen 	125 125 126	Egg Washing Thermal Pasteurization Nonthermal Pasteurization Surface Pasteurization of Shell Eggs Rapid Cooling Strategies for Improvement Conclusions References	165 168 169 170 172 173 173 173
Storing Table Eggs Storing Hatching Eggs Strategies for Improvement	127 128 131	17. Effects of Gamma Radiation for Microbiological Control in Eggs	
Analytical Methods Conclusions References	132 132 132	Marcia Nalesso Costa Harder and Valter Arthu Introduction Background Information on Radiation	177 177
13. The Eggshell Microbial Activity Ali Aygun		Irradiation of Food Irradiation of Eggs	178 179
The Eggshell and Membranes Microbial Contaminants of Eggshell Microbial Contamination of Eggshell Factors Affecting Microbial Activity Analytical Methods Conclusions References	135 137 139 139 142 143 143	Other Uses of Gamma Irradiation in Food Legislation Consumer Perception Strategies for Improvement Analytical Methods Conclusions References	182 182 183 183 183 183 184
14. Effects of Propolis on Eggshell			
Ali Aygun	145	Section IV Composition of Eggs	
Description of Propolis Antimicrobial Effects of Propolis Use of Propolis to Extend the Shelf Life of Eggs		18. Cholesterol in Chicken Eggs: Still a Dietary Concern for Some	
Strategies for Improvement Analytical Methods	154 154	Robert G. Elkin	
Conclusions	155	Introduction	189
References	155	Meta-analyses Versus Observational Studies:	100
15. The Eggshell Proteome Yields Insigh Into Its Antimicrobial Protection Megan Rose-Martel and Maxwell T. Hincke	t	Groups Versus Individuals Cholesterol in Chicken Eggs: Why it Should Still be a Target for Reduction Other Evidence of Inter-Individual Variability	190 190
, and the second s	157	in Cholesterol Homeostasis in Humans Cholesterol Content has Been Decreasing	192
Introduction Eggshell Structure	157 158	in Eggs from American Flocks	192

x Contents

Egg Cholesterol Contents: Perspectives		
on Analytical Techniques and Reporting Data	193	
Experimental Approaches to Egg Cholesterol		
Reduction	193	
What Does the Future Hold with Regard to		
Reducing Egg Cholesterol?	194	
Phosphatidylcholine Content of Eggs: A New		
Concern with Regard to Cardiovascular		
Disease Pathogenesis?	194	
Analytical Methods	194	
Conclusions	195	
Acknowledgment	195	
References	195	- 1-1
		22
19. Lutein and Zeaxanthin Carotenoids		
in Eggs		
El-Sayed M. Abdel-Aal, Humayoun Akhtar,		
James R. Chambers and Khalid Zaheer		
	199	
Chicken Eggs	199	
Carotenoids in Eggs and Their Analysis	199	
Effect of Feed Composition on Egg	202	
Carotenoids	202	
Carotenoids in Organic Eggs	202	
Effect of Cooking and Processing	203	
on Egg Carotenoids	203	
Egg Carotenoids and Human Health Strategies for Improvement	205	23
Conclusions	205	
References	205	
References		
20. Vitamins in Eggs		
Nelson E. Ward		
Fat Soluble Vitamins	207	
Water Soluble Vitamins	213	
Vitamin Levels in Eggs From Alternative		
Egg Production	215	
Sensory, Functional Property, and Toxicity	216	
Relative to Recommended Daily Allowances	216	2
Analytical Methods	218	
Conclusions	218	
References	218	
References		
Section V		
Use of Eggs		
	4	
21. Economic and Cultural Aspects of	tne	
Table Egg as an Edible Commodity		

Antonio	Gilberto	Bertechini
---------	----------	------------

Egg Production Trends	223
Egg Consumption Trends	223

Availability of Eggs	223
Technology, Innovation, and Geographics	224
Culture, Lifestyle, and Food Traditions	226
Consumer Attitudes	226
	228
Purchaser Preferences	228
Consumer Misconceptions	229
Global Irade	229
Marketing: Competition, Trends, and	
Strategies	229
Strategies for Improvement	230
Conclusions	230
References	230
References	
22. Use of Hen Egg White Lysozyme in the Food Industry	
Tiziana Silvetti, Stefano Morandi, Martin	
Hintersteiner and Milena Brasca	
Lysozyme Extraction and Purification	0.0.4
from Egg Albumen	234
Structure and Mode of Action	234
Current Research and Applications	
in the Food Industry	237
Strategies for Improvement	240
Conclusions	240
	240
References	
23. Function and Separation of Ovotransferrin from Chicken Egg	
Edirisingha Dewage Nalaka Sandun Abeyrathn and Dong Uk Douglas Ahn	е
Structure of Ovotransferrin	243
Use of Ovotransferrin and its Derived Peptides	243
Use of Ovotransferrin and its Derived i op a	245
Separation of Ovotransferrin	247
Strategies for Improvement	247
Conclusions	247
References	247
24. The Use of Egg and Egg Products in Pasta Production	
Cristina Alamprese	
	251
Introduction	201
Production Process of Fresh and Dried	251
Egg Pasta	251
The Role of Eggs on Pasta Quality	254
The Role of Eggs in Gluten-Free Pasta Products	255
Use of Non-chicken Eggs in Pasta Production	1 200
Strategies for Improvement	250
Analytical Techniques for the Determination	
of Egg Content and Quality in Pasta	256
Conclusions	257
	258
References	

25. The Eggshell and Its Commercial and Production Importance

Evandro de Abreu Fernandes and Fernanda Heloisa Litz

Introduction	261	
Role of the Eggshell	261	
Eggshell Composition and Structure	262	
Eggshell Formation	263	
The Mutual Relationship Between the Organic		
and Inorganic Matrix of the Eggshell	264	
Factors Influencing Eggshell Quality	264	
Strategies for Improvement	268	
Analytical Methods for Measuring		
Shell Quality	268	
Conclusions	268	
References	269	

26. Nutraceutical Egg Products

Reza Tahergorabi and Jacek Jaczynski

0	
Introduction	271
Development of Novel Nutraceutical Egg	
Products with Omega-3 Fatty Acid Rich Oils	272
Nutritional Composition and Potential Health	
Benefits of Nutraceutical Egg Products	273
Sensory Quality and Consumer Acceptability	
of Nutraceutical Egg Products	276
Market for Nutraceutical Egg Products Fortified	
with Omega-3 Polyunsaturated Fatty Acids	278
Strategies for Improvement of Nutraceutical	
Egg Products	278
Analytical Methods	278
Conclusions	279
References	279

Section VI Improving Production

27. Use of Dietary Probiotics to Improve	
Laying Hen Performance	

Anas Abdelqader

Introduction	283
Probiotics as a Feed Additive for	
Laying Hens	283
Egg Laying Performance	284
Egg Weight	286
Feed Utilization	286
Shell Quality Traits	286
Internal Egg Quality Traits	288
Egg Composition	289

Biological Mechanism of Probiotics	290
Impact of Stress on Intestinal Microbiota	
Balance in Laying Hens	291
Other Egg Laying Species	291
Strategies for Improvement	291
Analytical Techniques	292
Conclusions	292
References	292

28. Improving Performance Traits of Laying Hens with Vitamin C

Zain ul Abidin and Aisha Khatoon

Introduction	297
Physiological Role of Vitamin C	297
Stressors	300
The Effect of Vitamin C on Performance Traits	300
Supplemental Vitamin C in Japanese quail	
and Other Breeds of Chickens	305
Strategies for Improvement	305
Analytical Methods	305
Conclusions	305
References	306

29. Modifying Protein in Feed

Paul Hanes Patterson and Heather Kristin Burley

Introduction	309
Importance of Protein in Laying Hen Diets	309
Symptoms of Deficiencies and Excesses	
of Protein	311
Importance of Protein for Growth and Egg	
Production	311
Protein Impact on Egg Composition and Size	312
Dietary Protein Influence in Other Species	
of Poultry	314
Strategies for Improvement	315
Analytical Techniques for Feed Protein	
and Amino Acids	315
Conclusions	316
References	316

30. Improving Egg Production and Hen Health with Calcium

Patricia Y. Hester

Egg Formation	319
Calcium	321
Vitamin D	322
Phosphorus	323
Avian Bone	324
Osteoporosis	325
Relationship Between Egg Production Traits	
and Osteoporosis	326

xii Contents

Strategies to Improve Bone Strength and Egg	
Production in Laying Hens	326
Analytical Methods	327
Conclusions	327
References	328

31. Use of Ginseng in Animal Production

on Ose of Onseng in Animal Production	on
Aiane Aparecida da Silva Catalan, Valdir Silve de Avila, Francisco Noé da Fonseca, Everton Luis Krabbe, Fernanda Vieira de Avila, Eduarc Gonçalves Xavier and Victor Fernando Bütto	lo
Introduction Ginseng in Animal Production Strategies for Improvement Analytical Methods Conclusions References	331 332 334 334 335 335
32. Preventive Measures for Avoiding the Deleterious Effects of Heat Stre on Egg Production and Quality	SS
Patricia Y. Hester	
Production Responses to Heat Stress Coping Mechanisms Used by Hens	337
to Ameliorate Heat Stress Environmental Manipulation to Ameliorate Heat Stress	337
Managing Feed to Ameliorate Heat Stress	340 341
Strategies for Improvement	344
Conclusions	344
References	344
Section VII Improving Composition	
33. Supplemental Linseed on Egg Production	
Shakeel Ahmad, Zahid Kamran and Konstantinos C. Koutoulis	
Introduction	

Linseed as an Ingredient for Laying Hen Diets 34	19
Antinutritional Factors 35	50
Dietary Linseed, Linseed meal, and Linseed	
Oil on Production Performance	
of Laying Hens 35	52
Effect on Interior Egg Quality 35	8
Effect on Egg Shell Quality 36	51
Strategies for Improvement 36	2
Analytical Methods 36	2
Conclusions 36	2
References 36	2

34. Supplemental Flax and Impact on <i>n</i> 3 and <i>n</i> 6 Polyunsaturated Fatty Acids in Eggs	
Gita Cherian	
Egg Lipids Modifying the Egg Lipid Profile Omega-6 (n-6) and Omega-3 (n-3)	365 365
Polyunsaturated Fatty Acids in Eggs Human Requirement of $n-3$ Polyunsaturated	366 d
Fatty Acids Metabolism of Dietary Fat in Laying Hens and Origin of <i>n</i> -3 Polyunsaturated Fatty	366
Acids in Eggs Dietary Sources for n-3 Polyunsaturated	366
Fatty Acids Enrichment Nutritional Value of Flaxseed Influence of Form and Type of Flaxseed	367 367
and Antioxidants on Egg n−3 Fatty Acid Incorporation Effects on Yolk Fatty Acids of Eggs from Hens	369
Consuming Flax Effects of Feeding Flax to Laying Hens	369
on Production and Egg Quality Sensory Aspects and Oxidative Stability of Eggs from Hens Consuming Flax	370 370
Human Clinical Studies on Eggs from Hens Fed Flax	371
Strategies for Improvement Conclusions References	371 371 371
35. Supplemental Fish Oil and its Impact on <i>n−</i> 3 Fatty Acids in Eggs	
Hasan Yalcin	
Introduction Fatty Acid Composition Cholesterol Level Oxidative Stability Sensory Properties Hen Performance Human Health Benefits	373 373 375 376 376 377 379
Strategies for Improvement Conclusions References	379 379 380
36. Microalgal Feed Supplementation to Enrich Eggs with Omega-3 Fatty Acid	S
Charlotte Lemahieu, Charlotte Bruneel, Koenraad Muylaert, Johan Buyse and Imogen Fou	bert
Health Benefits of Omega-3 Fatty Acids Microalgae as an Alternative <i>n</i> -3 Longer Chain	383

Polyunsaturated Fatty Acid Source

Enrichment of Eggs from Laying Hens

384

385

388
388
389
389
389

37. Supplemental Iodine

Sebastian Opaliński

Introduction: Is Iodine Deficiency Still		
a Worldwide Problem?	393	
The Role of Iodine in Poultry Metabolism		
and Iodine Requirements	393	
Iodine Content of Eggs Compared		
with Other Foods	394	
The Influence of Iodine Supplementation		
on Laying Hen Performance	397	
The Effect of Supplemental lodine on		
Egg Traits and Egg Content (lodine Transfer)	398	
Strategies for Improvement	400	
Analytical Techniques: Brief Overview		S
of Iodine Determination Methods	400	A
Conclusions	401	
References	401	1
		- 4

Section VIII **Preserving Eggs**

38. Pickling Eggs

Jessie Usaga, Oscar Acosta, Elizabeth K. Sullivan and Olga I. Padilla-Zakour

Introduction	405
Pertinent Safety Parameters	405
Regulations and Safety Concerns	406
Pickled Egg Production	407
Strategies for Improvement	411
Conclusions	412
References	412

39. Sodium Chloride Preservation in Duck Eggs

Soottawat Benjakul and Thammarat Kaewmanee

<u> </u>	
Contents	XIII
e e incontro	/****

Strategies for Improvement	424
Conclusions	424
References	424

40. Inorganic Elements in Preserved Egg

Yonggang Tu and Yan Zhao

Introduction	427
The Processing Principles of Preserved Egg	427
The Processing Methods of Preserved Egg	428
Elements and Distribution Characteristic	
in Preserved Egg	428
Recommended Daily Intake of Minerals Used	
in Preserved Egg	431
Strategies for Improvement	431
Analytical Methods	432
Conclusions	432
References	433

Section IX Adverse Nonmicrobial Contaminants

41. The Effect of Estrogens on Egg-Laying Performance

Hüseyin Baki Çiftci

Introduction	437
Chickens	439
Quail	439
Ducks	440
Guinea Fowl, Geese, and Other Less	
Common Birds	441
Wild Birds	441
Estrogen Effects on Egg Quality	441
Estrogen Effects on Human Health	442
Analytical Methods	443
Conclusions	444
References	444

42. Antimicrobial Residues in Table Eggs

Akram R. Alaboudi

Antimicrobials Residues in Eggs	448
Distribution of Antimicrobials Residues	
in Egg Yolk and Albumen	448
Fluoroquinolones: Enrofloxacin and	
Ciprofloxacin Residues in Table Eggs	449
Chlortetracycline Residues in Table Eggs	450
Sulfanilamide Residues in Table Eggs	450
The Effect of Processing on Antimicrobial	
Residues	451
Applicability to Other Egg Laying Species	453
Analytical Techniques	453

xiv Contents

Drug Residues and Antimicrobial Resistance	453
Strategies for Improvement	454
Conclusions	454
References	454

43. Nitrofuran Veterinary Drug Residues in Chicken Eggs

Fernando Ramos, Lúcia Santos and Jorge Barbosa

Introduction	457
Chemical Structure, Metabolism,	
and Bioavailability	457
Mutagenic and Toxic Effects	458
Regulatory Framework on the Prohibition	
of Nitrofuran Use	459
Monitoring Nitrofurans in Food	
and by-Products	459
Nitrofuran Drug Residues in Chicken Eggs	460
Nitrofuran Drug Residues in Chicken	
Egg Products	461
Strategies for Improvement	461
Analytical Techniques	461
Conclusions	462
References	463

44. Anthelmintic Benzimidazoles in Eggs

Encarnación Rodríguez-Gonzalo, María Mateos-Vivas, Javier Domínguez-Álvarez, Diego García-Gómez and Rita Carabias-Martínez	
Introduction	465
General Characteristics of Anthelmintic	
Benzimidazoles	465
Presence of Anthelmintic Benzimidazoles	
in Eggs	467
 Strategies for Improvement 	469
Analytical Methods for the Determination	
of Anthelmintic Benzimidazoles in Eggs	469
Conclusions	472
References	472

45. Flame Retardants in Wild Bird Eggs and in Relation to Eggs in the Human Food Supply

Da Chen, Yan Wu and Hillary Marler

Introduction
Toxicological Impacts of Polybrominated
Diphenyl Ethers on Avian Eggs
Polybrominated Diphenyl Ethers
in Wild Bird Eggs
Flame Retardants in Eggs of the Human
Food Supply
Strategies for Improvement

Analytical Method for Measurement of Polybrominated Diphenyl Ethers in Eggs Conclusions References	480 481 481	
46. Polychlorinated Dibenzo- <i>p</i> -Dioxins, Polychlorinated Dibenzofurans, and Dioxin-Like Polychlorinated Bipheny in Chicken Eggs	ls	
Burcu Olanca		
Chemical and Toxicological Properties Origins Transport into the Food Chain	485 488 488	
Toxic Effects, Tissue Distribution, and Bioavailability Regulations	489 490	
An Overview of Recent Data on Contaminant Levels in Eggs	491	
Dioxin Crisis in Poultry Strategies for Improvement and Intervention Methods	494	
Analytical Techniques	495 495	
Conclusions	496	
References	496	
47. Influence of Plant Toxins on Laying Hen Performance and Egg Quality Robert G. Elkin		
Introduction	100	
Alkaloids	499 499	
Glycosides	502	
Proteins, Amino Acids, Amino Acid	502	
Derivatives, and Nitriles	503	
Lipids	505	
Phenolic Compounds	505	
Other Toxins	507	
Analytical Methods Conclusions	508	
	508 508	
Section X Microbial or Parasitic Contaminants		

48. Salmonella and Impact on Egg Production
Richard K. Gast and Deana R. Jones

475

476

477

479

480

Introduction: Salmonella	Enteritidis
and the Egg Industry	

Salmonella and Commercial Egg Production Analytical Methods for Salmonella in Poultry	516	52. Infectious Bronchitis
and Eggs	518	Juliet R Roberts and Kapil K
Strategies for Improvement	519	Introduction
Conclusions	519	
References	519	Trophism of Infectious Bron Effects of Infectious Bronch
49. Colibacillosis and Its Impact on Egg Production		on Production and Egg Q Effects of Infectious Bronch on the Oviduct of the Lay Effectiveness of Vaccination
S.M. Lutful Kabir, Mahmudul Hasan Sikder, Jahangir Alam, Sucharit Basu Neogi and Shinji Yamasaki		Preventing Adverse Effects Virus on the Hen Strategies for Improvement
Introduction	523	Analytical Methods for Viral
Characteristics of Avian Pathogenic E. coli	523 523	and Identification
Pathology	525 524	Conclusions
Entry Routes for Avian Pathogenic E. coli	524 524	References
The Immune Response of the Host	524 525	
Bacterial Virulence Factors in the	525	53. Coccidiosis in Egg Layi
Counterattack	526	
Virulence Gene Profiles	528	Hilary David Chapman
Antimicrobial Resistance	529	Introduction
Zoonotic Potential	529	Background
Control Strategies of Avian Colibacillosis	529	Life Cycle and Biology
Additional Strategies for Improvement	530	Etiology
Analytical Techniques and Infection Models	531	Management
Conclusions	532	Chemotherapy
References	533	Vaccination
		Vaccination or Chemotherap
50. Mycoplasmosis in Egg Laying Flocks		in Egg Laying Stock? Turkeys and Game Birds
		Strategies for Improvement
Edgar David Peebles		Conclusions
Introduction	537	References
Mycoplasmas	537	
Mycoplasma gallisepticum	537	54. Mycotoxin Impact on E
Live Attenuated Vaccines	538	
Strategies for Improvement	543	Carlos Augusto Fernandes de Diane Valganon de Neeff, Ága
Analytical Methods	544	de Pinho Carão and Carlos Hu
Conclusions	544	Ger IIIIO Carao anu Carios Hi
References	544	Introduction
		Main Toxigenic Fungi and Myc
51. Avian Influenza Virus and Newcastle Disease Virus		Occurrence of Mycotoxins in Feeds
Disease vilus		Toxicological Effects of Mycote
Kateri Bertran, Leonardo Susta and Patti J. Miller		in Laying Hens Aflatoxins
Avian Influenza	547	Fumonisins
Newcastle Disease	551	Trichothecenes
	555	Zearalenone
Analytical Methods	555	Ochratoxin A
Conclusions	556	Residues of Mycotoxins in Egg
References 5	556	Prevention of Mycotoxicoses

Juliet R Roberts and Kapil K Chousalkar

Introduction	561
Trophism of Infectious Bronchitis Strains	561
Effects of Infectious Bronchitis Virus	501
on Production and Egg Quality	562
Effects of Infectious Bronchitis Virus	
on the Oviduct of the Laying Hen	563
Effectiveness of Vaccination in	
Preventing Adverse Effects of Infectious	
Virus on the Hen	566
Strategies for Improvement	566
Analytical Methods for Viral Isolation	
and Identification	567
Conclusions	567
References	567

Coccidiosis in Egg Laying Poultry

Hilary David Chapman

Introduction	571
Background	571
Life Cycle and Biology	571
Etiology	573
Management	574
Chemotherapy	574
Vaccination	575
accination or Chemotherapy	070
in Egg Laying Stock?	576
Furkeys and Game Birds	577
strategies for Improvement	577
Conclusions	577
References	577

Aycotoxin Impact on Egg Production

arlos Augusto Fernandes de Oliveira, iane Valganon de Neeff, Ágatha Cristina e Pinho Carão and Carlos Humberto Corassin ntroduction 581 ain Toxigenic Fungi and Mycotoxins 581 ccurrence of Mycotoxins in Poultry Feeds 585 oxicological Effects of Mycotoxins in Laying Hens 585 latoxins 585 monisins 589 chothecenes 589 aralenone 590 chratoxin A 590 sidues of Mycotoxins in Eggs 591 Prevention of Mycotoxicoses 591

xvi Contents

Strategies for Improvement	593
Detection and Measurement of Mycotoxins	593
Conclusions	594
References	594

55. Parasites in Laying Hen Housing Systems

Bradley A. Mullens and Amy C. Murillo

Introduction	597
Life Cycles of Selected Pests	597

Effect of Habitat Complexity	
on Pest Infestations	60
Parasite Management Options	60
Strategies for Improvement	60
Analytical Methods	60
Conclusions	60
References	60

Index

607

Contributors

El-Sayed M. Abdel-Aal Guelph Research and	A
Development Centre, Agriculture and Agri-Food	
Canada, Guelph, ON, Canada Anas Abdelgader, Doportment of A in the state	Je
Anas Abdelqader Department of Animal Production,	
Faculty of Agriculture, The University of Jordan, Amman, Jordan	
Edirisingha Dewage Nalaka Sandun Abeyrathne	
Department of Animal Science, Uva Wellassa	~
University, Badulla, Sri Lanka	G
Zain ul Abiti Veterinary Research Institute, Lahore	
Cantt, Pakistan	
Oscar Acosta National Center of Food Science and	M
Technology, University of Costa Rica, San José,	
Costa Rica	6 -
Shakeel Ahmad Al-Watania Poultry Institute of	So
Technology, Al-Bukayriyah, Saudi Arabia	
Dong Uk Douglas Ahn Department of Animal Science,	A
Iowa State University, Ames, IA, United States	An
Humayoun Akhtar Guelph Research and Development	
Centre, Agriculture and Agri-Food Canada, Guelph,	Ka
ON, Canada	N.a
Akram R. Alaboudi Department of Animal Pathology and	
Public Health, Faculty of Veterinary Medicine, Jordan	
University of Science and Technology Irbid Jordan	1
Janangir Alam Animal Biotechnology Division National	2
Institute of Biotechnology, Ganakbari, Ashulia, Savar	Mel
Dhaka, Bangladesh	A
Cristina Alamprese Department of Food, Environmental	Mil
and Nutritional Sciences, University of Milan, Milan, Italy	I
Jennifer Arthur Avian Research Centre, Faculty of Land	Cha
and Food Systems, The University of British Columbia	R
vancouver, BC, Canada	F
Valter Arthur Nuclear Energy Center in Agriculture,	Hea
Piracicaba, São Paulo, Brazil	Т
Muhammad Aamir Aslam Animal Breeding and	P
Genomics Centre, Wageningen UR Livestock Research,	Joha
Lelystad, The Netherlands; Institute of Microbiology,	R
United States-Pakistan Center for Advanced Studies,	L
University of Agriculture, Faisalabad, Pakistan	Rita
Fernanda Vieira de Avila Pharmacist, Specialist in	C
Forensic Biology and Genetics, Porto Alegre, Rio Grande do Sul, Brazil	Sa
Valdir Silveira de Avile, EMPRADA SA CARA	Aian
Valdir Silveira de Avila EMBRAPA Swine and Poultry,	Aı
Concórdia, Santa Catarina, Brazil	Ri

Ali Aygun Faculty of Agriculture, Department of Animal Science, Selcuk University, Konya, Turkey orge Barbosa Center for Pharmaceutical Studies,

Department of Health Sciences, School of Pharmacy, Coimbra University, Coimbra; National Institute for Agricultural and Veterinary Research, Oeiras, Portugal

régoy Y. Bédécarrats Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada

lasoumeh Bejaei Sustainable Agriculture Program, Faculty of Science and Horticulture, Kwantlen Polytechnic University, Richmond, BC, Canada ottawat Benjakul Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand

Atonio Gilberto Bertechini Department of Animal Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil

ateri Bertran Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States

ehmet Bozkurt Erbeyli Poultry Research Institute, Aydin, Turkey

lena Brasca Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy

arlotte Bruneel Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven; Research Unit Food and Lipids, Kortrijk, Belgium

ather Kristin Burley Department of Animal Science, The Pennsylvania State University, University Park, PA, United States

an Buyse Leuven Food Science and Nutrition Research Centre (LFoRCe); Division of

ivestock-Nutrition-Quality, Leuven, Belgium Carabias-Martínez Department of Analytical hemistry, Nutrition and Food Science, University of alamanca, Salamanca, Spain

ane Aparecida da Silva Catalan Graduate Program in Animal Science, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil xviii Contributors

- James R. Chambers Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Hilary David Chapman Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Da Chen Cooperative Wildlife Research Laboratory; Department of Zoology, Southern Illinois University, Carbondale, IL, United States
- **Gita Cherian** Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
- Kapil K. Chousalkar School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
- Hüseyin Baki Çiftci Department of Animal Science, School of Agriculture, Selcuk University, Konya, Turkey
- Carlos Humberto Corassin Department of Food Engineering, School of Animal Science and Food Engineering, Pirassununga, São Paulo, Brazil
- Courtney Lynd Daigle Department of Animal Science, Texas A&M University, TX, United States
- Diane Valganon de Neeff Department of Food Engineering, School of Animal Science and Food Engineering, Pirassununga, São Paulo, Brazil
- Carlos Augusto Fernandes de Oliveira Department of Food Engineering, School of Animal Science and Food Engineering, Pirassununga, São Paulo, Brazil
- Ágatha Cristina de Pinho Carão Department of Nutrition and Animal Production, School of Veterinary Medicine University of São Paulo, Pirassununga, São Paulo, Brazil
- Javier Domínguez-Álvarez Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, Salamanca, Spain
- **Robert G. Elkin** Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
- **Evandro de Abreu Fernandes** Animal Production, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- Francisco Noé da Fonseca EMBRAPA Swine and Poultry, Concórdia, Santa Catarina, Brazil
- Imogen Foubert Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven; Research Unit Food and Lipids, Kortrijk, Belgium
- **Diego García-Gómez** Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, Salamanca, Spain
- Richard K. Gast United States Department of Agriculture, Agricultural Research Service, Egg Safety and Quality Research Unit, Athens, GA, United States Charlene Hanlon Department of Animal Biosciences,
- University of Guelph, Guelph, ON, Canada

- Marcia Nalesso Costa Harder Technology College of Piracicaba—FATEC-Piracicaba/CEETEPS, Piracicaba, São Paulo, Brazil
- Patricia Y. Hester Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Maxwell T. Hincke Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Martin Hintersteiner Bioseutica B.V., Lugano, Switzerland
- Jacek Jaczynski Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
- **Deana R. Jones** United States Department of Agriculture, Agricultural Research Service, Egg Safety and Quality Research Unit, Athens, GA, United States
- Thammarat Kaewmanee Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
- Zahid Kamran University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
- Kevin M. Keener Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- **Aisha Khatoon** Department of Pathology, Faculty of Veterinary Sciences, University of Agriculture, Faisalabad, Pakistan
- Dariusz Kokoszyński Department of Poultry Breeding and Animal Products Evaluation, Faculty of Animal Breeding and Biology, UTP University of Science and Technology in Bydgoszcz, Bydgoszcz, Poland
- Konstantinos C. Koutoulis Department of Avian Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece
- Everton Luis Krabbe EMBRAPA Swine and Poultry, Concórdia, Santa Catarina, Brazil
- Kamil Küçükyılmaz Department of Animal Science, Faculty of Agriculture, Eskişehir Osmangazi University, Eskişehir, Turkey
- Charlotte Lemahieu Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven; Research Unit Food and Lipids, Kortrijk, Belgium
- **Fernanda Heloisa Litz** Animal Production, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- **S.M. Lutful Kabir** Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan; Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Hillary Marler Department of Zoology, Southern Illinois University, Carbondale, IL, United States
- María Mateos-Vivas Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, Salamanca, Spain

Patti J. Miller Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research
Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States
Department of Agriculture, Athens, GA, United States
Stefano Morandi Institute of Sciences of Food
Production, Italian National Research Council,
Milan, Italy
Bradley A. Mullens Department of Entomology,
University of California, Riverside, CA, United States
Amy C. Murillo Department of Entomology, University
of California, Riverside, CA, United States
Koenraad Muylaert Research Unit Aquatic Biology,
Kortrijk, Belgium
Sucharit Basu Neogi Graduate School of Life and
Environmental Sciences, Osaka Prefecture University,
Osaka, Japan
Ruth Catriona Newberry Department of Animal and
Aquacultural Sciences, Norwegian University of Life
Sciences, Ås, Norway
Burcu Olanca National Food Reference Laboratory,
Ministry of Food, Agriculture and Livestock,
Yenimahalle, Ankara, Turkey
Sebastian Opaliński Department of Environment,
Animal Hygiene and Welfare, Wroclaw University
of Environmental and Life Sciences, Wroclaw,
Poland
Olga I. Padilla-Zakour Department of Food Science,
Cornell University, Geneva, NY, United States
Paul Hanes Patterson Department of Animal Science,
The Pennsylvania State University, University Park,
PA, United States
Edgar David Peebles Department of Poultry Science,
Mississippi State University, Mississippi State, MS,
United States
Fernando Ramos Center for Neuroscience and
Cell Biology; Center for Pharmaceutical Studies,
Department of Health Sciences, School of Pharmacy,
Coimbra University, Coimbra, Portugal
Juliet R. Roberts Animal Science, School of
Environmental and Rural Science, University of New
England, Armidale, NSW, Australia
Encarnación Rodríguez-Gonzalo Department of
Analytical Chemistry, Nutrition and Food Science,
University of Salamanca, Salamanca, Spain

Khalid Zaheer Consultant, Toronto, ON, Canada Yan Zhao Engineering Research Center of Biomass Conversion Ministry of Education, Nanchang University, Nanchang, China

- Victor Fernando Büttow Roll Graduate Program in Animal Science, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Megan Rose-Martel Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Lúcia Santos Center for Neuroscience and Cell Biology; Center for Pharmaceutical Studies, Department of Health Sciences, School of Pharmacy, Coimbra University, Coimbra, Portugal
- Mahmudul Hasan Sikder Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- **Tiziana Silvetti** Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
- Elizabeth K. Sullivan Department of Food Science,
 - Cornell University, Geneva, NY, United States
- Leonardo Susta Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Reza Tahergorabi North Carolina Agricultural & Technical State University, Greensboro, NC, United States Yonggang Tu Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Jessie Usaga National Center of Food Science and Technology, University of Costa Rica, San José, Costa Rica Nelson E. Ward Animal Nutrition & Health, DSM Nutritional Products, Inc., Ringoes, NJ, United States Henri Woelders Animal Breeding and Genomics Centre,
 - Wageningen UR Livestock Research, Lelystad, The Netherlands
- Yan Wu Department of Zoology, Southern Illinois University, Carbondale, IL, United States
- Eduardo Gonçalves Xavier Graduate Program in Animal Science, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Hasan Yalcin Engineering Faculty, Food Engineering Department, Erciyes University, Kayseri, Turkey Shinji Yamasaki Graduate School of Life and
- Environmental Sciences, Osaka Prefecture University, Osaka, Japan

606 SECTION | X Microbial or Parasitic Contaminants

Mozafar, F., 2014, Tackling red mite in laying hens remains a challenge. World Poultry Magazine 30, (1). Available from: http://www.worldpoultry.net/ Broilers/Health/2014/7/Tackling-red-mite-in-laying-hens-remains-a-challenge-1438417W/

 Mullens, B.A., Chen, B.L., Owen, J.P., 2010. Beak condition and cage density determine abundance and spatial distribution of northern fowl mites, Ornithonyssus sylviarum, and chicken body lice, Menacanthus stramineus, on caged laying hens. Poult. Sci. 89, 2565--2572.

Mullens, B.A., Hinkle, N.C., Sziji, C.E., 2000. Monitoring northern fowl mites (Acari: Macronyssidae) in caged laying hens: feasibility of an egg-based sampling system. J. Econ. Entomol. 93, 1045–1054.

Mullens, B.A., Owen, J.P., Kuney, D.R., Sziji, C.E., Klingler, K.A., 2009. Temporal changes in distribution, prevalence and intensity of northern fowl mite (*Ornithonyssus sylviarum*) parasitism in commercial caged laying hens, with a comprehensive economic analysis of parasite impact. Vet. Parasitol. 160, 116–133.

Mungube, E.O., Bauni, S.M., Tenhagen, B.A., Wamae, L.W., Nzioka, S.M., Muhammed, L., Nginyi, J.M., 2008. Prevalence of parasites of the local scavenging chickens in a selected semi-arid zone of eastern Kenya. Trop. Anim. Health Prod. 40, 101–109.

Murillo, A.C., Mullens, B.A., 2016. Diversity and prevalence of ectoparasites on backyard chicken flocks in California. J. Med. Entomol. 53, tjv243.
 Nolan III, M.P., White Jr., R.A., Villaveces, A., 2008. Monitoring house fly populations using fly speck cards. Nolan Integrated Pest Control and Management, Watkinsville, GA, United States. Available from: http://www.nipcam.com

ment, watkinsvine, GA, United States, Available from http://www.inpeanleon. Nordenfors, H., Chirico, J., 2001, Evaluation of a sampling trap for *Dermanyssus gallinae* (Acari: Dermanyssidae). J. Econ. Entomol. 94, 1617–1621. Olsen, O.W., 1974. Animal Parasites: Their Life Cycles and Ecology, third ed. University Park Press, Baltimore, MD, United States.

Olsen, O. w., 1974. Annual ratasites. Then Elic Cycles and Ecology, und car carryans rate resay Easternary response governs fitness in an avian ectoparasite, the Owen, J.P., Delany, M.E., Cardona, C.J., Bickford, A.A., Mullens, B.A., 2009. Host inflammatory response governs fitness in an avian ectoparasite, the northern fowl mite (*Ornithonyssus sylviarum*). Int. J. Parasitol. 39, 789–799.

Permin, A., Bisgaard, M., Frandsen, F., Pearman, M., Kold, J., Nansen, P., 1999. Prevalence of gastrointestinal helminths in different poultry production systems. Br. Poult. Sci. 40, 439–443.

Systems, D. Fourt, Sci. 70, 707–703.
Sherwin, C.M., Nasr, M.A.F., Gale, E., Petek, M., Stafford, K., Turp, M., Coles, G.C., 2013. Prevalence of nematode infection and faecal egg counts in free-range laying hens: relations to housing and husbandry. Br. Poult. Sci. 54, 12–23.

 Sherwin, C.M., Richards, G.J., Nicol, C.J., 2010. Comparison of the welfare of layer hens in 4 housing systems in the UK. Br. Poult. Sci. 51, 488–499
 Sparagano, O.A.E., George, D.R., Harrington, D.W.J., Giangaspero, A., 2014. Significance and control of the poultry red mite, *Dermanyssus gallinae*. Annu. Rev. Entomol. 59, 447–466.

Stockdale, H.J., Raun, E.S., 1965, Biology of the chicken body louse, *Menacanthus stranineus*. Ann. Entomol. Soc. Am. 58, 802–805.
 Suter, P.R., 1964. Biology of *Echidnophaga gallinaceae* (Westw.) and comparison with selected other types of fleas. Acta Trop. 21, 193–238(in German).
 Thienpont, D., Rochette, F., Vanparijs, O.F.J., 1986. Diagnosing Helminthiasis by Coprological Examination, second ed. Janssen Research Foundation, Beerse, Belgium, pp. 35–36.

Witcombe, D.M., Smith, N.C., 2014. Strategies for anti-coccidial prophylaxis. Parasitology 141, 1379–1389.

Index

Α

Abutilon theophrasti (velvetweed or buttonweed), 500, 505 Accipiter nisus (sparrowhawk), 478 Acetobacter spp., 237 N-acctylmuramoylhydrolase, 160 Achilles heel, 234 Acute toxic syndrome, 587 Adrenal cortical cells, 299 Aerosol infection model for colibacillosis, 531 Aflatoxicosis, acute, 587 Aflatoxin B₁ biotransformation pathways of, 588 Aflatoxins, 581, 586, 587 biotransformation by liver, 588 ortho-demethylation, 587 epoxidation, 587 hydration, 587 hydroxylation transformation, 587 reduction, 587 Aflatoxins B₁, chemical structure of, 582 Agarose gel electrophoresis, 52 Agelaius phoeniceus (red-winged blackbird), physical parameters of egg, 52 Aggressive pecks characteristics, 112 vs. gentle feather pecks vs. severe feather pecks, 112 Aging egg, 125 membrane rupture, 125 vitelline membrane elasticity, loss of, 125 yolk flattening, 125 Aging hen, 126 albumen quality, effect on, 126 shell quality, effect on, 126 vitelline membrane, effect on, 126 Agrostemma githaga (corn cockle), 500, 503 Ahemeral lighting, 68 Alabio, breed of duck, 23 Albendazole sulfone, 469 Albendazole sulfoxide, 469 Albumen carbon dioxide content, 132 liquefaction, 131 proteins of, 56 total solids, proportion of, 5 Albumen pH, 132 carbon dioxide loss, effect of, 125 Alkaloids laying hen performance and egg quality, effect on, 499-501

pharmacologic activity, 499 pullets and laying hens toxicoses, 49 Alpha-linolenic acid (ALA), 271 Alphitobius diaperinus (darkling beetle American animal welfare organization, American Egg Board, 229 American flocks egg cholesterol content of, 192 American kestrel, 476 American type culture collection (ATC Amino acid analyzer, 278 Amino acid derivatives laying hen performance and egg qua effect on, 503-505 Amino acids laying hen performance and egg qual effect on 503-505 measurement analytical techniques, 315 Aminoglycosides, 529 3-Amino-5-morpholino-methyl-1, 3-oxazolidinone (AMOZ). 3-Amino-2-oxazolidinone (AOZ), 457 Anaphylaxis, 226 Anas platyrhynchos (mallard or wild du 23, 476 domesticus, 23 Angiotensin-converting enzyme, 245, 42 Animal agriculture, 77 Animal and Plant Health Inspection Ser (APHIS), 18 Animal feed supplementation, 393 Animal Health Protection Act, 18, 29 Animal mycotoxicosis, susceptibility, 58 Animal welfare, 77, 226 advantage and disadvantages of conve cages, 77 legislation, 77-79, 89 voluntary codes of practice, 89, 91 Anthelmintic benzimidazoles, 466 administration and absorption, 467 analytical methods for, determination benzimidazoles, 469, 470 capillary electrophoresis, 471 extraction of analytes, 470 gas chromatography, 471 liquid chromatography, 471 liquid-liquid extraction, 471 matrix solid-phase dispersion, 471 polymer monolithic microextraction separation and detection techniques. solid-phase extraction, 471

	characteristics of, 465
99	chemical properties, 465
	classification, 465
e), 600	in eggs, 467–469
, 89	helminth infections, 467
	veterinary drugs, 467
	maximum residue limits, in foodstuffs of
	animal origin, 467, 468
	mechanism of action, 466
CC), 168	quantification, in egg, 471
	strategies for improvement, 469
	Anthroquinones, 507
ility,	Anticoccidial drugs, 574, 575
	Antimicrobial molecules
	identification by proteomics approach, 159
lity,	mechanism
	antimicrobial peptides, 161
	C-type lectin-like protein, 161
	hydrolytic mechanism, 160
	nutrient sequestering mechanisms, 160
	protease inhibitors, 160
457	Antimicrobial residues, 447
	analytical techniques, 453
	ciprofloxacin, 449
ick),	drug residues and, 453
	effect of processing, 451
	heat treatment, 451
21	storage effects, 452
	enrofloxacin, 449
rvice	fluoroquinolones, 449
	in egg, 448
	chlortetracycline residues, 450
	disappearance of, 448
85	distribution, in yolk and albumen, 448
	drug dosage level, 449
entional	other species, 453
	PremiTest, 448
	sulfanilamide residues, 450–451
	strategies for improvement, 454
	APHIS. See Animal and Plant Health Inspection
. C	Service (APHIS)
of	Apo-ovotransferrin, 244
	Apoptosis, 47
	Arachidonic acid, 6
	Argentina
	grain and soybean production, 225
	Aromadendrene, 146
	Ascaridia eggs, 604 Ascaridia infection, 597
n, 47 I	Ascaridia nematode, 603
s, 471	Ascaridia spp., 96
·, · · ·	Asia 78

Asian mongoose, 29 Aspartic acid involvement in lysozyme mode of action, 234 Aspergillus, 139 flavus, 581 nomius, 581 ochraceus, 583 parasiticus, 581 Association of Official Analytical Chemists, 278 ATCC. See American type culture collection (ATCC) Atherosclerosis, 192 Atresia, 47 Attenuated vaccines for coccidiosis, 575 Australia shell eggs stored, under refrigeration in, 166 washing and sanitization of shell eggs, 166 Availability of, eggs, 223 Avian adrenal glucocorticoid stress, effect of, 113 Avian B-defensin (AvBD), 158, 159 Avian bone, 324 Avian colibacillosis, 523. See also Colibacillosis Avian hatching eggs storage conditions, 129 washing, 128 Avian infectious bronchitis (IB), 561 Avian influenza (AI) virus, 547 classification of, 547 egg production, 548, 549 goal of vaccination, 550 hemagglutinin gene, 550 highly pathogenic avian influenza (HPAI), 547 vaccine, 550 Avian nephrosis, 561 Avian pathogenic Escherichia coli (APEC) aerosol infection model, 531 analytical techniques/infection models, 531 infection model, 531 signature-tagged mutagenesis, 531 antimicrobial resistance, 529 bacterial virulence factors, 526 colonization, 526 immunoevasion, 526 characteristics of, 523 control strategies of, 529 herbal plants, 530 management, 529 probiotics, 530 vaccination, 530 entry routes, 524-525 extrachromosomal DNA of plasmids, 528 fimbrial adhesin (Yqi), 531 gene profiles. See Virulence gene profiles immune response of host, 525-526 improvement strategies, 530 into adult female, 525 intraair sac inoculation model, 531 intranasal inoculation model, 531 intraperitoneal injections, 532 intratracheal infection model, 531 intravenously injecting, 532

iutA/hlyF/iss/iroN/ompT genes, 528 localized infections in hens, 524 oral infection model, 532 organ cultures, 532 outer surface of, 528 respiratory tract, invasion of, 525 sitAP/ompT/hlyF/iroN genes, 528 subcutaneous infection model for colibacillosis, 532 transmission routes, 529 vaccination, 530 virulence factors, 527 zoonotic potential, 529 Avidin synthesis, 57 eggshell matrix, 158, 159 shell membrane, 49, 159 Azadirachta indica, 530

B

Bacillus cereus, 137, 244 propolis, effect of, 151 Bacillus subtilis, 160 Bacillus thuringiensis, 160 Bacterial virulence factors, 526 Bactericidal-permeability increasing (BPI) protein, 158, 159 Ballot initiative, 78 Baluts, 33 Barn eggs, 105 Barns, 127 Bed bug, 599, 601, 602 Bee glue, 145 Beer, 238 Beetles, 599-601 Behavioral syndromes, 113 Benzimidazole chemical structure of, 466 derivatives, 465 mechanism of action, 466 Biotin, 208, 213-216 Birds egg, yolk dihydrotestosterone concentration, 49 steroid hormones concentration, 49 testosterone concentration, 49 Bobwhite quail meat, 14 Bone formation and resorption, 324 communication among bone cells, 324 cytokines, role of, 325 Bone metabolism cells involved, 324 osteoblasts, 324 osteoclasts, 324 osteocytes, 324 Bone mineralization, 323 Bone quantity and quality assessment ashing, 327 histomorphometry, 327 mineral analysis, 327 Bone strength improvement strategies, 326 Boron trifluoride, 278 BPI protein. See bactericidal-permeability increasing (BPI) protein

Brassica spp. (cabbage and kale), 500, 502 Brazil egg production, 5, 224 grain and soybean production, 225 green propolis, 146 per capita consumption of eggs, 224 Brettanomyces spp., 237 Broad-Breasted White turkey hens, 38 Broiler breeder hen dietary recommendations for calcium, phosphorus, and vitamin D₃, 322 hatching eggs, effect of storing, 130 prevalence of coccidiosis, 573 Broiler starter diet limiting amino acid concept, 310 Broken-out egg fertility determination germinal disc, role of, 126 germinal disc, 126 Brominated diphenyl ether-99, 476 Brominated flame retardants, 475 total global use of, 475 Brown egg layer dietary recommendation for calcium, phosphorus, and vitamin D₃, 322 human consumption of eggs from, reasons for popularity, 33 Brown Tsaiya, breed of duck, 23

Brassica napus (rapeseed or canola), 367, 500, 502

С

δ-Cadinene, 146 Caged eggs, 105 Caged White Leghorn hens, 339, 344 Cage-free housing, 602 Cage-free indoor systems, 602 Cage layer fatigue, 321 Cairina moschata, 23 Calcified eggshell, 158 antimicrobial proteins, 158 bacterial contamination, 158 barrier against bacterial entry, 158 biomineralized barrier, 158 physical stresses, role in, 158 vertical crystal layer, 158 Calcium dietary recommendations for reproductively active avian females, 322 hen's body reserve, 321 shell content, 321 Calcium carbonate mineralization, 158 Calcium metabolism, 319 California animal welfare legislation, 78 Association of, California Egg Farmers, 78 Callipepla californica, 13 Calmodulin assay, 567 Camelina sativa (camelina or false flax), 367 Campylobacter, 161 nest boxes, 97 transmission, 138 Canada egg weight range, 9

shell eggs stored, under refrigeration in, 166 terrestrial ecosystem, 477 washing and sanitization of shell eggs, 166 Candida albicans, 244 propolis, antifungal effect of, 153 propolis, effect of, 151 Candida krusei, 244 Cannibalism advantages, 111 disadvantages, 111 Canthaxanthin, 7, 199, 202, 203 Capillaria annulata (crop and esophagus nematode), 598 Capillaria caudinflata (nematode), 598 Capillaria contorta (crop and esophagus nematode), 598 Capillaria obsignata (small intestine nematode) 598 Cardiovascular disease (CVD), 189 risk center, cholesterol content, 190 Carotenoids, 199 analysis of, 200 analytical techniques for, separation, 200 and human health, 204-205 biological effects in humans, 199 determination, 388 effect of cooking and processing, 203 effect of feed composition, 202 algae, 202 nutritional composition of, feeds, 202 seed byproducts, 202 tomato peel, 202 fat-soluble pigments, 199 lutein and zeaxanthin, 199 in organic eggs, 202-203 strategies for improvement, 205 synthetic, 200 xanthophyll, 199 2/Caryophyllene, 146 Cassia occidentalis, 507 Catalase, 297 Catharacta maccormicki (south polar skua), 478 Cell-agglutinating activity, 504 Centers for Disease Control and Prevention, 165 Central America, 78 Century eggs, 33 Cerorhinca monocerata (rhinoceros auklets), 479 Cevitaminic acid, 297 Cevlon jungle fowl, 3 Chalazae, 125 CHD1 gene, 52 Cheese, 237 applications of lysozyme, 237 late blowing phenomenon, 237 Chemical defense modalities, 157 Chemotherapy, for coccidiosis, 575 Chesapeake Bay ecosystem, 477 Chewiness, texture property of cooked egg products, 272 Chicken, 439. See also Chicken egg; Domestic chicken breeder houses, 128 dienestrol diacetate, 439 domestication, 3 mitochondrial DNA analyses, 3

eggshell, 34 Eimeria, 597 fertile hatching eggs, used for, 319 storage conditions, 129 genistein, 437 hard-boiled egg, 14 Menacanthus stramineus (body lou mycotoxins, egg-laying, 585 oocyst vaccines, 576 Chicken egg, 55, 199 albumen, 56 list of proteins, 56 water proportion, 56 analytical methods for minerals, 10 chemical contaminate of, 107 cooked egg products texture properties of, 272 ethanol extracts of propolis, 152 hatching eggs long-term storage positioning, effect of, 130 short-term storage 131 albumen pH, effect on, 131 mineral content of 103 effect of organic rearing system of factors affecting mineral content, phosphorus, 103 shell, 56 membranes, 56 source of bioavailable lutein, 199 zeaxanthin carotenoids, 199 source of iodine, 103 strategies for improvement, 108 pasture as a mineral source, 108 trace element content, 103 yolk, 55 carbohydrate, 55 fat, 55 lipids, 55 China antimicrobial resistance, 529 largest producer of eggs, 33, 223, 22 Chloramphenicol, 529 Chlorella (microalgae), 384, 495 fusca, 385 Chlortetracycline residues in eggs, 450 boiling effect, 451 frying effect, 452 Cholecalciferol, 322 Cholesterol absorption rates, in humans, 192 analytical methods, 194 and omega-3 fatty acids content cooked whole egg and egg beaters vs. nutraceutical egg products, 2' biliary secretion, 192 consumption of, 190 dietary cholesterol, 189 future perspectives to, reduce, 194 groups vs individuals, 190 homeostasis, 192 ingestion, 190 level in egg yolks from hens consumi oil, 375

1	lowering strategies in, humans, 193 meta-analyses vs observational studies, 190
ş	metabolism, 192 plasma levels in humans after consuming
	cggs, 191 wars, 193
use), 598	Cholesterol-free egg substitute (CFES), 191
use), 570	Cholesterol oxidation products, 181
	effect, 3 weeks of exposure to, ultraviolet
	irradiation, 181
	Cholesteryl ester, 58
	Chukar
	storage conditions, hatching eggs, 129
)8	Cimex lectularius (bed bug), 599
	Ciprofloxacin, 449-450
	refrigeration effect on egg concentration, 452
	storage effect on egg concentration, 453
	Cladosporium, 139
	Cloacal cannibalism, 115
	Clostridium botulinum, 236, 405
	Clostridium perfringens, 161, 574
	Clostridium tyrobutyricum, 237
	Clusia, 146
105	Co, breed of duck, 23
on, 105	Coccidian protozoa
, 103	Eimeria tenella, 598
	Coccidiosis, in egg-laying poultry
	background, 571
	chemotherapy, 574–575
	chemotherapy, in egg-laying stock, 576 etiology, 573
	immunity, 574
	immunogenicity of <i>Eimeria</i> species, 574
	improvement strategies, control in alternative
	housing, 577
	life cycle/biology, 571–576
	management, 574
	use of moisture-proof paper on wire
	floors, 573
	monitoring flocks, 576
	occurrence of schizogony
	in intestinal villi, 572
24	species of Eimeria and intestinal section
	affected, 573
	turkeys/gamebirds, 577
	vaccination, 575–576
	Cocconeis gorensis, 500
	Code of Federal Regulations (CFR), 405
	Code of Hygienic Practice for Eggs and Egg Products (CAC/RCP 15-1976), 7
	Cohesiveness, texture property of cooked egg products, 272
	Colibacillosis, 523
	control strategies of, 529
	intraallantoic infection model, 532
275	pathology, 524
	Colibacillosis infections, 30
	Coliforms, 142
	Colinus virginianus, 13
	Collagen pyrrolic cross-linking, 325
	Columba livia domestica (pigeon)
	sex ratio bias, effect of corticosterone, 51
	Columbus eggs, 278
ing fish	Commercial hen egg production
	different husbandry systems 105

Commercial-scale furnished cages, 77 parasite prevalence, 602 Conalburnin, 243 Condensed tannins, 506 Congee, 28 Conjugated linoleic acids, 7 anticarcinogenic effect, 7 Consumer continued education, 230 Consumer attitudes, 226 animal welfare, 226 economics, 227 hard-core purchasers of free range eggs, 227 socioeconomic group, 227 "soft" purchasers of free range eggs, 227 environment, 227 caged housing, 227 mitigation strategies, 227 noncage housing, 227 human health, 226 cardiovascular disease, 226 cholesterol issue, 226 Consumer misconceptions, 228 cholesterol, 228 nutritional value, 228 sustainability of, small-scale locally grown eggs, 229 taste, 228 yolk color, 228 Consumer perception of gamma radiation, 183 Consumption trends, 223 per capita consumption of eggs, 224 Continuous lighting, 68 Conventional cages, parasites, 601 Conventional husbandry trace element concentration in egg, 107 Convicine, 503 Cooler refrigeration, 127 α -Copaene, 146 Corn earworms 581 Coturnix coturnix, 13 japonica (Japanese quail), 13 sex ratio bias, effect of corticosterone, 51 Cracked eggs incidence, 305 Crotalaria gorensis (rattlebox or showy crotalaria), 500 Crotalaria retusa (rattlebox or showy crotalaria), 500 Crotalaria spectabilis (rattlebox or showy crotalaria), 500 Crotalaria spp. (rattlebox or showy crotalaria), 500 Crude propolis total flavonoids, 154 purification, 154 total phenolic compounds, 154 β-Cryptoxanthin, 202 Cultural aspects of eggs, 226 Cyanogenic glycosides, 350, 502 Cyclopropenoid fatty acids, 505 pink egg white deterioration, 505 Cystatin, 158, 159 Cysteine-rich eggshell membrane proteins (CREMP), 158

D

Daidzein, chemical structure of, 438 Daidzin, chemical structure of, 438 Dairy diets, global mycotoxin occurrence, 586 Dalechampia, 146 Darkling beetle, 600 Datura ferox (fierce thornapple), 500, 501 Datura stramonium (jimsonweed), 500, 501 Deoxynivalenol, 586, 589 Department of Agriculture National Organic Program, 310 Dermanyssus gallinae (red mite), 96, 600 Deshi, breed of duck, 23 Detoxification procedures for contaminated grains, 591 DEXA. See Dual-energy X-ray absorptiometry (DEXA) DHASCO. See Docosahexaenoic acid single cell oil (DHASCO) Dibenzofurans, 492, 494 Dienestrol diacetate 439 Dietary aflatoxin, 585 Dietary copper toxicity, 431 Dietary linseed, 352 Dietary protein other species of poultry, effect on, 314 Dietary crude protein (CP) egg case weight, effect on, 313 Dihydroflavonols, 146 1,25-dihydroxycholecalciferol, 299, 322 3,5-Dinitrosalicylic acid hydrazide (DNSAH), 457 Dioxin bioavailability, 489-490 chemical and toxicological properties, 485--487 contaminant levels in eggs, 491-494 contamination feedstuffs contamination, 494 regulations, 490-491 monitoring analytical techniques, 495-496 bioassays aryl hydrocarbon immunoassay, 496 immunoassay, 496 confirmatory methods, 495 screening methods, 496 origins, 488 tissue distribution, 489-490 toxic effects, 489-490 transport into food chain, 488-489 Dioxin-like polychlorinated biphenyls, 492, 494 Docosahexaenoic acid (DHA), 6, 373 Docosahexaenoic acid single cell oil (DHASCO), 272 Docosapentaenoic (DPA), 373 biosynthetic pathway, 374 Domestic chicken global spread, 4 housing, 3 origin of, 3 Dried egg products, 225 Drying grains to control mycotoxins, 592 Dual-energy X-ray absorptiometry (DEXA), 327

Duck. See also Duck eggs cross breeding indigenous breed, 30 daidzein dose, 439 egg production, 24 feed requirements and recommendations, 24. 314 322 dietary calcium requirements, 24 duck crop, 24 optimum nutrient requirements, 24 growth stages, 24 brooding period, 24 growing period, 24 incubation time, 24 meat as a source of protein for humans, 23 Duck eggs acid treatment during preservation process, 416 chemical composition of fresh and salted, 417 disease, 29-30 avian cholera, 30 avian influenza, 29 duck plague, 30 duck viral hepatitis, 30 Newcastle disease, 29 food safety issues, 29-30 food borne disease and contamination issues, 30 polychlorinated dibenzofurans, effect of 30 polychlorinated dibenzo-p-dioxins, effect of 30 Salmonella enteritidis, effect of, 30 improvement strategies, 30 egg composition improvement, 30 egg production improvement, 30 nutrient composition, 26 physical characteristics, 25, 26 magnesium and calcium in eggshell formation, role of, 25 pretreatment with sodium dodecyl sulfate during preservation, 416 processed products, 28-29 balut, 29 nidan, 28, 29 preserved, 28, 415 salted, 28, 415 thousand-year-old or century egg, 28, 29 production statistics, 23 production systems, 26-28 duck and fish integrated system, 26 drawback, 26 herding system, 26 modern intensive commercial production, 28 semi-intensive system, 28 regional preferences, 23 salting processes, 416-417 garlic oil, role of, 417 improvement strategies, 424-421 storage conditions, hatching, 129 vs. chicken eggs physical characteristics, 25, 26 yolk preservation, 419 viscoelastic properties, 422 Duck layer breeds, 23

E

Earthworms, 598 Echidnophaga gallinacea (sticktight flea), 599, 601 Ecological husbandry, 199 Ectoparasite, 601, 602 ectoparasitic mites (Ornithonyssus/ Dermanyssus), 597 infestation estimates, 604 Egg. See also various entries starting with Egg antioxidants content, 6 selenium, 6 bacterial contamination, 157 via horizontal transmission, 157 via vertical transmission, 157 candling, 132 cartoned, 167 cholesterol content, 6 collection 127 complete food, 6 components, 5-6 albumen, 5 yolk, 5 consumption, 6, 223--225 cardiovascular disease, risk of, 6 dioxins toxic equivalency intake, 492 plasma low-density lipoproteins cholesterol to high-density lipoproteins cholesterol ratio, 38 serum or plasma cholesterol, effect on, 6, 190-192 cuticle, role of, 5, 128 economical source of nutrients, 5 effects of temperature, 123 essential amino acids, 6 exterior quality factors affecting, 8 fat-soluble vitamins. See also various entries starting with the name of the vitamin vitamin A, 6 vitamin D, 6 vitamin E. 6 vitamin K, 6 food and nutrition security, role in, 5 food safety, 127 measures to ensure, 7 formation, 319-320 influence of 26 h ahemeral cycle, 69 14 h photoperiod on, 68 further processed, 225 global production and consumption, 5 human nutrition and health value, 6-7 in-line processing, 126 interior quality factors affecting, 9 microbial activity during incubation propolis, effect of, 154 microbial contaminants, 7 enteric bacteria, 7 mineral content, 104 numbers laid, 319 nutrients manipulation, 7

organic, 105 oviposition, 5 packaging material, 127 phosphatidylcholine content, 194 phospholipids, 6 phosphorus, 6 position during storage, 131 preparing and serving, 7 preservation process, 428 producing countries, percentage of world contribution, 224 productivity, feather pecking, relation with, 111 quality factors affecting, 8 interior egg quality, 8 albumen quality, 8 overall quality, 8 yolk quality, 8 shell quality, 8 rich source of choline, 194 shell membranes. See also Eggshell defense against bacterial invasion, 5 storage, 127-128, 166 vitelline membrane, role of, 5 water-soluble vitamins. See also various entries starting with the name of the vitamin choline, 6 cobalamine (B12), 6 folate (B₉) or folic acid, 6 pantothenic acid (B5), 6 pyridoxine (B₆), 6 riboflavin (B2), 6 thiamine (B_1) , 6 Egg Beaters, 272 Egg by-products, 230 Egg enrichment dietary supplementation of hen's feed autotrophic microalgae, 384, 385 carotenoid enrichment, 387 fish oil. 373 flax, 367 iodine, 397 n-3 polyunsaturated fatty acids (PUFA), 365, 385 vitamins, 207 egg products, 271 Egg industry, 77 furnished cages, 77 noncage housing for, laying hens, 77 improving production efficiency and sustainability, 230 political environment, 77 Salmonella Enteritidis, effect of, 515-516 use of conventional cages, 77 Egg laying flocks cannibalism, 111 feather pecking, 112 air quality, effect of, 117 behavioral phenotypes, 114 environmental enrichment, effect of, 117 improvement strategies, 117 lighting, effect of, 117 other commercial egg laying species, applicability to, 117

Index 611

risk factors for developing, 114 temperature, effect of, 117 feather pecking behavior analytical methods to assess, 118 coping style, impact of, 113 Egg man, 192 Egg processing regulatory requirements, 516 risk reduction practices, 517 Egg production calcium, role of, 321 exogenous estrogen, effect on, 439 management systems, 3-4 housing, 4 nutrition, 3 operation size, 4 organic eggs, 4 other bird eggs in shell production by countries, 24 traits and osteoporosis relationship between, 326 Egg products high protein nutrition bar, 230 Egg Products Inspection Act, 18, 29, 165 Egg Safety and Quality Management Program, 516 Eggshell. See also various entries starting with Eggshell aerobic bacterial contamination, 139, 141 analytical methods for, measuring quality, 268 antimicrobial molecules mechanisms, 160-161 bacterial growth, how to minimize, 127 breakage cooling process, effect of, 131 cryogenic cooling, effect of, 131 composition and structure, 6, 135, 262 calcium carbonate, 135, 262, 342 calcium phosphate, 135, 262 cross section of chicken eggshell, 263 magnesium carbonate, 135, 262 organic material, 262 pores on surface, 263 protein, 135 cross section scanning electron micrograph, 137 cuticle, 135 duck, 25, 26 emu, 40 factors influencing quality, 264 age, 264 dietary calcium, 265 top-dressing feed, 265 dietary manganese, 266 dietary phosphorus, 266 drinking water, 267 equipment, 267 estrogens, 441 health status, 267 heat stress, 267, 342 housing, 267 storage and shipping conditions, 166, 267 vitamin D, 266 flax, 370

Eggshell. See also various entries starting with Eggshell (cont.) formation, 263, 319 ginseng, effect of, 332, 333 goose, 37 guinea fowl, 34 infectious bronchitis, effect of, 562 mammillary layer, 135 meal, 268 microbial activity analytical methods, 142 factors affecting, 139-141 hen age, 140 housing systems, 139 seasons, 140 storage temperature, 140, 166 strains or genotype, 140 microbial contaminants, 137-139 Campylobacter spp., 137 Escherichia spp., 137 Gram-negative bacteria, 137 Gram-positive bacteria, 137 Listeria spp., 137 Salmonella spp, 137 Staphylococcus spp, 137 microbial contamination, 139 among housing systems, 139-140, 517 horizontal transmission, 139 vertical transmission, 139 microbiological analysis, 142 whole egg washing technique, 142 morphology scanning electron micrographs, 136 mutual relationship between, organic and inorganic matrix of 264 ochratoxin A, effect of, 591 oiling, 128 ostrich, 40 palisade layer, 135 pores, gaseous and moisture exchange, role in, 136 porosity, factor affecting, 142 propolis, in vivo antimicrobial effect of, 151 quail. 14 quality calcium deficiency, effect of, 321 circulating estrogen, 441 daidzein, effect of, 441 exogenous estrogen, effect of, 441 iodine, effect of, 399 linseed and oil, effect of, 361 probiotics, effect of, 288 vitamin C, effect of, 301, 303 role of, 261 shell trait measurements, 305 structure, 158 cuticle, 158 shell calcification, 158 surface crystal layer, 135 thickness heat stress, effect of, 300, 337 measurement, 305 digital micrometer, 142 total mesophiles ethanol extract of propolis, effect of, 152

turkey, 39 use of byproduct, 268 water and gas exchange, 262 Eggshell cuticle antimicrobial proteins, 158 composition, 135, 158 egg freshness, role in, 135 microorganism penetration, prevention of. 135 outermost barrier, use as, 158 protein extracts, 158 antimicrobial activity, 158 quality, 158 scanning election micrograph, 136 water movement, role in, 158 Eggshell matrix proteins antimicrobial activity, 138 antimicrobial properties, 137 location, 137 osteopontin, 137 ovocalyxin-32, 137 ovocalyxin-36, 137 ovocleidin-17 137 ovocleidin-116, 137 Eggshell membranes bioactive molecules, 158 lysozyme, 158 ovocalyxin-36, 158 ovotransferrin, 158 cross-linked properties, 158 inner shell membranes, 135 location, 158 morphology inner shell membranes, 135 outer shell membranes, 135 scanning electron micrographs, 136, 263 protein fibers of outer shell membrane, 262 protein extraction techniques, 158 relation with shell and albumen, 135 Egg size categories associated weights per egg, per dozen, and per case, 313 and quality, protein, effect of, 312 EggsPlus, 278 Egg sweating, 131 Egg washing, 135, 165 advantage of, 168 commercial process, stages, 165 in detergent and sanitizer, 168 effect of, wash water temperature, 165 use of, chlorine, 167 Egg weight effect of cystine, 314 fish oil, 377, 378 flax, 370 free-range, 94 ginseng, 333 heat stress, 337 infectious bronchitis, 562 iodine, 399 light spectrum, 71 linseed, 353, 357

methionine, 314 ochratoxin A, 587, 591 photoperiod and body weight, 71 probioitcs, 286 vitamin C, 304 vitamin deficiency during heat stress, 342 purchaser preference, 228 sex ratio, 52 size of egg, 313 species chicken, 8, 9, 34 duck, 26 emu, 34, 40 goose, 34, 37 guinea fowl, 34 ostrich, 34, 40 quail, 14 turkey, 34, 39 Egg white (albumen), 6 gel, 427 proportions, effect of dietary protein and amino acids, 312 proteins, 420 lysozyme, 420, 427 ovalbumin, 420, 427 ovomucoid, 427 ovotransferrin, 243, 427 quality effects of ginseng, 332, 333 iodine, 399 linseed, 358, 360 probiotics, 288, 289 vitamin C, 304 exogenous estrogens, 441 factors affecting, 9, 313 salt preservation, liquefaction of, 420 weight or proportion, effect of daidzein, 441 iodine, 399 linseed, 358, 360 Egg yolk, 6 and white proportions protein, effect of, 312 color carotenoids, 200 exogenous estrogens, 441 gamma radiation, effect on, 180 linseed (flax), effect on, 358, 370 organic eggs, 202 xanthophyll, 200, 202 lipid extraction, 388 proportions, effect of dietary protein and amino acids, 312 quality, effects of factors affecting, 9 ginseng, 333-334 probiotics, 288, 289 vitamin C, 304 rheological behavior during salt preservation, 420 salt preservation, 418, 419, 421 storage modulus during slat preservation, 420 weight, effects of daidzein, 441

fish oil, 378 iodine, 399 linseed (flax), 358, 359, 370 Egypt 2010 H5N1 virus, 550 Eicosapentaenoic acid (EPA), 6, 271, 366 Eicosapentaenoic (EPA) fatty acids, 373 biosynthetic pathway, 374 dietary concentrations of, 374 Eimeria, 573 acervulina, 571-573 brunetti, 572, 573 life cycle of, 572 maxima, 571-573 mitis, 571-573 multiplication, 573 necatrix, 572-573, 576 praecox, 571-573 prevalence in chickens, 573 prevalence in turkeys and gamebirds, 576 tenella, 571-573, 575 Electrodialysis desalination of preserved egg white, 420 Electrolysis. See Pasteurization Electromagnetic spectrum, 177 range of electromagnetic radiation frequencies/wavelengths, 178 Element concentrations fresh duck egg vs. preserved duck egg, 429 Embryo albumen as a nutrient source, 58 biotin, 58 glucose, 58 proteins and amino acids, 58 trace minerals, 58 5-day-old chicken embryo, 57 digestion and absorption of protein, 57 functional roles of vitamins in developing, 60 influence of breeder hen diet, 59 fat, 59 minerals, 59 protein 59 vitamins, 59 in ovo feeding, 62 metallothionein and ferritin, 57 nutrient retrieval, 57, 61 roles of minerals in, developing, 61 shell as a mineral source, 58 membranes, 58 yolk as a nutrient source, 57 final stages of, embryogenesis, 58 lipids, 57 synthesis and storage of glucose, 58 Embryonic tracheal organ cultures, 567 Emu derived oil antiinflammatory properties, 40 eggs, 40 albumen content, 40 average weight, 40 improvement strategies, 41 shell, 40 storage conditions, hatching, 129 vitamins content 40 yolk content, 40 Energy concentration

goose eggs vs. chicken eggs, 37 Enriched cage dustbathing, 81-82 foraging and scratching, 81, 83 hen colony size, 84 hen space requirement, 84-85 litter, 81 nail trimmers, 83--84 nest area, 80, 81 perches, 80-82 political environment, 77-80 pullet enrichments, 85 strategies for improvement, 85-86 Enriched colony housing, 78 Enrofloxacin, 449-450 refrigeration effect on egg concentration, 452 storage effect on egg concentration, 453 Enterobacteriaceae family, 523 Enterococcus faecalis, 161 Enzyme-linked immunosorbent assay (ELISA), 327, 496 Erucic acid, 505 Erysipelothrix rhusiopathiae, 96 Erythrura gouldiae (Gouldian finch) sex ratio bias, effect of corticosterone, 51 Escherichia coli, 138, 171, 181, 244, 406, 457 propolis, effect of, 151 Essential amino acid content cooked whole egg and egg beaters vs. nutraceutical egg products, 274 Estradiol-17 β (E₂) synthesis, 437 Estrogens analytical methods, 443 egg mass, 443 eggshell color, 443 eggshell strength, 442 eggshell thickness, 443 Haugh unit, 443 isoflavone and E2 content, 443 yolk and albumen weights, 443 volk color, 443 circulating levels, 437 effects on ducks, 440 egg production of chicken, 439 egg quality of chicken eggs, 441-442 geese, 440-441 guinea fowl, 440, 441 human health, 442 ostriches, 441 pigeons, 441 quail, 439, 440 wild birds, 441 estradiol content of, egg yolk, 438 Europe animal welfare movement, 77 conventional cages, 77 European corn borer, 581 European Food Safety Authority, 494 European Union, egg production, 5, 224 housing of hens, 77 starlings, 476 Extracellular calcium, 319

Index 613

Falco peregrinus (peregrine falcon), 476 Falco sparverius (American kestrel), 476 Family poultry production systems, 4 Farm-to-fork best practices systems, 19 B-Farnesol 146 Favism, 503 Favoumi, 305 FDA. See Food and Drug Administration (FDA) Feather pecking behavior aggressive feather pecking, characteristics of, 112 beak trimming, effect of, 116 ethogram, 118 gentle feather pecking, characteristics of. [12 obsessive-compulsive disorders, similarity with, 113 severe feather pecking, characteristics of, 112 stocking density, effect of, 116 diet, effect of, 115 form of feed, mash vs. pelleted, 115 free range environments, effect of, 117 genetic traits, 111 grooming behavior, 118 lighting, effect of, 117 noncage environments, effect of, 117 serotonin, 114 temperament, relation with, 113 water presentation, bell drinkers vs. nipple drinkers, effect on, 116 Feathers pecking. See Feather pecking ultraviolet reflectivity, 117 reproductive fitness indicator, 117 testosterone, effect of, 117 Febantel, 465 Fecal-oral parasites, 603 Federal Meat Inspections Act, 18 Fish and seafood products dioxin and dioxin-like compounds exposure, 494 Fish oil effects on egg production, 377 egg weight, 377 hen body weight, 377 hen feed intake, 377 hen performance, 377-378 sensory properties of eggs, 376-377 yolk cholesterol level, 375 yolk n-6/n-3 fatty acid ratio, 375 yolk omega-3 fatty acids, 373-374 yolk weight, 378 fatty acid composition, 373 human health benefits, 379 oxidative stability, 376 strategies for improvement, 379 Flame atomic absorption spectrometry multielement analysis, use for, 432 Flame retardants, 475 in eggs of human food supply, 479

Flavanones 146 Flavin-containing monooxygenase isoform, 507 Flax seed chemical composition and fatty acid profile. 368 human clinical studies on eggs, 371 influence of form, 369 laying hens production, and egg quality, 370 nitrogen-adjusted approximate metabolizable energy content, 368 nutritional value of, 367 sensory aspects and oxidative stability of eggs, 370 strategies for improvement, 371 type of, 369 yolk fatty acids as a result of hen consumption, 369 form of flax, effect on, 369 Flubendazole, 467 Fluoroquinolones, 449-450, 529 Fly population estimates, 604 Folate, 207, 213, 214, 216 Folic acid, 208, 213-215. See also Folate Folin-Ciocalteu reagent for measuring phenolic compounds, 154 Follicular abortion and resorption in ovary, hypothesis of, 49 Follicular development in ovary, hormones supplied via blood, 49 Food iodine content, 395 traditions as it related to egg consumption, 226 Food allergies, 226 Food and Agriculture Organization (FAO), 23 Food and Agriculture Organization/World Health Organization (FAO/WHO) reference protein, 35 Food and Drug Administration (FDA), 29, 165, 406, 591 Egg Safety Rule, 18 Food Safety and Inspection Service (FSIS), 29 Food Safety Modernization Act, 29 Foraging area in enriched cages, 81 Fowl plague in 1878, 547 Fratercula arctica (Atlantic puffins), 479 Free-range duck egg production, 98 Free-range egg production, 89, 92, 105 analytical methods to confirm eggs are from ranged hens, 99 assessment of, 98 authenticity, 98 consumer perceptions, 98 chicken egg characteristics, 96 esthetic/eating /qualities/freshness, 97 food safety, 97 nutritional value, 97 shell quality, 97 definition, 89 dietary management, 94 forage sources, 94 fowl cholera, 96 guideline standards, 91 health and welfare of laying hens, 77, 95 hen welfare and egg characteristics, 95

parasites, 96, 602 production methods, 90 use of range by, laying hens, 90 productivity of, laying hens in, 94 reproductive pathologies, 96 risk of, bone damage, 96 sensory quality of eggs, 98 strategies for improvement, 98-99 top 20 countries reporting, 90 tree canopy, 93 use of range, 93 FSIS. See Food Safety and Inspection Service (FSIS) Fumonisin, 581, 583, 586, 589 chemical structure of B1 and B2, 583 Fungi, toxigenic, 581 Furaltadone, 457 chemical structure of, 458 metabolite (3-amino-5-morpholino-methyl-1, 3-oxazolidinone or AMOZ), 457, 458 Furazolidone, 457 chemical structure of, 458 metabolite (3-amino-2-oxazolidinone or AOZ), 457, 458 Fusarium moniliforme, 583 nygamai, 583

G

Gallin (ovodefensin), 158, 159, 161 Gallus gallus, 3, 135 domesticus, 3 sex ratio bias, effect of corticosterone, 51 Gallus lafayetti, 3 Gallus sonneratii, 3 Gamebirds, coccidiosis in, 577 Gamma irradiation, 169, 178 effectiveness of, in egg, 179 from radioactive isotope of cobalt, 179 in food, 182 irradiation doses, 180 structural alteration of proteins, 182 Gamma radiation. See Gamma irradiation Gaoyou, breed of duck, 23 Gas-liquid chromatography for measurement of amino acids, 315 Genetically modified crops, 4 Genistein, chemical structure of, 438 Genistin, chemical structure of, 438 Gentle feather pecking characteristics, 112 Geobacillus stearothermophilus, used in testing for antimicrobial residues 448 Geographics, effect on egg production, 224 Germacrene D, 146 Ginseng, 331 analytical methods, 334 berry extract, 334 fermented ginseng extract, 334 root extract, 334 as antioxidant, 334 biological evaluations, in different species, 332

in animal production, 332 effect of consuming on egg production, 333 on egg weight and quality traits. 332-333 in humans for health promoting and medicinal properties, 331, 332 unknowns of ginsenosides when fed to chickens, 334 accumulation in eggs, 334 age to administer, dosage, length and method of supplementation, 334 human health benefits from consuming eggs from hens fed ginseng, 334 phytochemical composition, 334 sensory properties of eggs, 334 Global shell egg production, 5 Global trade, 229 Glutamate oxaloacetate transaminase, 311 Glutamate pyruvate transaminase, 311 Glutamic acid involvement in lysozyme mode of action, 234 Glutathione homeostasis, effect of exposure to pentabrominated diphenyl ether, 476 role in reduced state for vitamin C. 297 nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)dependent enzymatic process, 297 Glutathione peroxidase, 297 Gluten-free pasta products role of, eggs, 255 Glycine max (soybeans), 500, 504 Glycosides laying hen performance and egg quality, effect on, 502-503 Goblet cells, in histology of intestinal mucosa, 292 Goitrogenic glycosides, 502 Gold Circle Farms, 278 Gonadotropin inhibitory hormone (GnIH), 65 Gonadotropin-releasing hormone (GnRH), 442 Goose eggs, 37-38 bakery goods, use in, 37 baking cakes, use in, 37 chemical composition, 38 chemical composition modification diet manipulation, 38 confectionery products, use in, 37 eggshell percentage, 37 fat content, 37 marketing strategies, 41 quality, 37 shape index, 37 storage conditions, hatching, 129 structural characteristics, 37 weight, 37 width, 37 Goose hen dietary recommendation for calcium, phosphorus, and vitamin D3 for reproductively active females, 322

ginsenoside Rx, 331

domestication process, 37 egg-laying capabilities, 37 Gossypium spp. (cottonseed), 500, 506 Gossypol, 506 Gouldian finches sex ratio bias, effect of corticosterone, 51 Grading of chicken eggs, 7 voluntary federal program, 516 Gray jungle fowl, 3 Great Britain egg consumption, 226 salmonella scare, 226 Guinea fowl eggs, 33-36 ash content. 35 delicacy, 35 fat content, 35 fertility, 36 factor affecting, 36 hatchability, 36 factors affecting, 36 high nutritive value, 35 keets 36 marketing strategies, 41 niche-market species of poultry, 33 protein content, 35 shell thickness, 34 storage conditions, hatching, 129 vs. chicken eggs, 34 weight, 34 Guinea fowl hen age of sexual maturity, 34 dietary recommendation for calcium and phosphorus for reproductively active females, 322 egg production period, 34 estrogen effects, 440 hen-day egg production, 34 reproductive maturity, 34 Gumminess, texture property of cooked egg products, 272

н

Hardness, texture property of cooked egg products, 272 Hatching eggs air freighted, 129 artificial incubation, 128 automated egg washing and sanitation, 131 bacterial load, 128 candling, 132 collection, 128 plastic flats, use of, 128 fumigation, 128 hand dipping, 131 hand spraying, 131 hatchability, 130 hatch rate, 129 heating, effect of, 131 microbial contamination prevention, 128 prewarming, 131 prolonged storage, 129 blastoderm damage, 129 storage, 128-131 carbon dioxide, effect of, 130

temperature and relative humidity Hexuronic acid, 297 recommendations, 129 High-density lipoprotein (HDL) cholesterol, 189 transport, 129 Highly pathogenic avian influenza (HPA1) truck temperature, effect of, 129 virus, 547 Hatchling, 58 egg production, effect on, 548 Haugh unit, 154, 165, 292, 305 histological sections from reproductive albumen quality indicator, 154 tract, 549 Heat dissipation reproductive tract, 550 effect of, inadequate vitamin availability, 342 virus replication, 550 mechanisms of, 337 High performance liquid chromatography thermoregulatory methods, 338 (HPLC), 154, 200, 594 Heat stress High-resolution mass spectrometry, 495 behavioral responses, 337 Histocompatibility antigens, 526 coping mechanisms, 337 Histone, 158, 159 distribution of feed, 343 Holo-ovotransferrin, 244 effect of ambient temperature and relative Housefly, 599, 601 humidity on hen, 338 larvae, 601 environmental manipulation, 340 Housing conventional houses, 339 aerobic bacteria on eggshells, 141 evaporative cooling methods, 340 production systems, 77, 597 exhaust fans, 339 HPAI. See Highly pathogenic avian influenza mechanical ventilation system, 339 (HPAI) virus heat shock proteins, 339 HPLC. See High performance liquid nutritional manipulation, 340 chromatography (HPLC) high-density nutrient diet, 340 Human diet, eggs, role of, 5, 33 metabolite of choline, 342 Humane Farm Animal Care, 89, 91 physiological responses, 338 Humane Society of United States, 79 production response, 337 25-Hydroxycholecalciferol (25OHD₃), 210, strategies for improvement, 344 211 322 Heliotropium europaeum (European 1-α-Hydroxylase, 299 heliotrope), 500, 501 Hydroxylation transformation of aflatoxin, Helmeted guinea fowl, 34 587, 588 Hemagglutination inhibition test for avian Hy-Line W-36 nutritional recommendations. influenza and Newcastle 312 disease 555 Hypercholesterolemia, 6, 189 Hemagglutinin (HA) protein, avian influenza Hyperglycemia, 299 virus, 547, 548 Hypoproteinemia, 299 Hen Hypothalamic gonadotropin releasing hormone beak trimming effects, 603 I (GnRH-I), 65 breeder Hypothalamic-pituitary-adrenal (HPA) axis condition, 61 stressor, effect of, 113 nutrient assimilation into egg, 56 Hypothalamo-pituitary-gonadal axis, 65 albumen, 57 control by light and photoperiod, 66 shell, 57 control of, extra-retinal photoreceptors, 70 yolk, 56 overview of, 66 feather pecking, risk factors, 114 feeding, 115-116 importance of litter, 114-115 outdoors access 116 perches, access to, 115 range, 116 space use, 116 watering, 115, 116 feed and ingredients with carotenoid 201, 202 feed for organic eggs, 4 health, calcium, role of, 321 welfare perspective due to housing sy 77, 597 Herbal plants avian pathogenic E. coli (APEC), 530 ginseng, 331

outdoors access, 110	Ideal protein ratio, 309
perches, access to, 115	Immunity to coccidiosis, 573
range, 116	Immunogenicity of Eimeria species, 573
space use, 116	Immunoglobulin, maternal transfer, 57, 555
watering, 115, 116	India
feed and ingredients with carotenoids, 7,	egg production, 224
201, 202	per capita egg consumption, 223, 224
feed for organic eggs, 4	Indian Runner duck, 23
health, calcium, role of, 321	Inductively coupled plasma emission
welfare perspective due to housing systems,	spectrometry for measuring
77, 597	trace minerals
Herbal plants	advantages, 432
avian pathogenic E. coli (APEC), 530	Inductively coupled plasma mass spectrometry
ginseng, 331	for iodine measurement, 400
Heterakis gallinarum (cecal worm), 598	Infectious bronchitis (IB), 561
Heterakis spp. (nematode), 96	magnum of infected hen
Hexosamine, 135	scanning electron micrograph, 566

Infectious bronchitis virus (IBV), 561 albumen quality, effect on, 563 analytical methods for viral isolation and identification, 567 G strain, 564 Korean strains, 565 Massachusetts strain, 564 Mexican strain, 562 multiplication in enteric tissues, 562 nephropathogenicity, 561 N1/88 or T strain-challenged hens previously vaccinated, 566 on oviduct of laying hen, 563-565 on production and egg quality, 562 pathology of oviduct, 564 QX genotype, 565 shell color, effect on, 563 structure of, 561 symptoms, 561 trophism of strains, 561-562 vaccination, effectiveness of, 566 vaccines for emerging variants, need for, 566 watery whites, 565 In ovo feeding, 62 Instrumental neutron activation analysis multielement analysis, use for, 432 Interior egg quality egg white carbon dioxide, effect of, 125, 152 effect of hen consumption of ginseng, 332, 333 iodine, 399 linseed, 358, 360 probiotics, 288, 289 vitamin C. 304 propolis, effect with long-term storage, 152 egg yolk, 358 color carotenoids, 200 exogenous estrogens, 441 gamma radiation, effect on, 180 linseed (flax), effect on, 358, 370 organic eggs, 202 xanthophyll, 200, 202 propolis, effect with long-term storage, 152 International Egg Commission, 4 International Organization of Vine and Wine, 237 Intestinal calcium absorption vitamin D, role of, 322 Intestinal microbiota enumeration and typing, 292 Intestinal mucosa histology, 292 Intraair sac inoculation infection model for colibacillosis, 531 Intraallantoic inoculation infection model for colibacillosis, 532 Intracerebral pathogenicity index for Newcastle disease virus, 556 Intramuscular inoculation infection model for colibacillosis, 532 Intranasal inoculation infection model for colibacillosis, 531

Intraperitoneal infection model for colibacillosis, 532 Intratracheal infection model for colibacillosis, 531 Intravenous infection model for colibacillosis, 532 lodine analytical techniques, 400-401 colorimetric method, 400 electrochemical detection, 401 flame atomic absorption spectrometry, 401 gas chromatography, 401 inductively coupled plasma mass spectrometry, 400 ion chromatography, 401 ion-selective electrode method, 401 isocratic high performance liquid chromatography, 401 radiochemical neutron activation analysis, 401 content, eggs vs. other foods, 394-397 dietary requirement of poultry, 394 deficiency in humans worldwide problem, 393 role or function of, 393, 394 sources for hen diet, 374, 398 supplemented in the diet egg content, effect on, 398-400 egg traits, effect on, 399, 400 veast sources, 400 Ionizing radiation, 177 energy levels of, 177 sources of, 177, 178 Irradiation. See also Gamma irradiation analytical methods, 183 assessment of foaming of liquid egg white, 183 colorimeter for egg white and yolk color, 183 gas chromatography for volatile compounds of egg white, 183 Haugh unit for albumen quality, 183 Roche fan for yolk color, 183 spectrometry for turbidity of liquid egg white, 183 textile profile analyzer for cooked egg white, 183 viscometer for viscosity of liquid egg white, 183 egg, 179 change in yolk color, 180 cholesterol oxidation products, 181 functional properties, irradiated egg white, 179-180 in comparison to or replacement of hot pasteurization, 179; 181 reduction in microbes, 179, 181 food, 178 advantages and disadvantages, 178 chemical composition change, 178 inactivation of microorganisms, 178 nutritional value change, 178 inactivation of microbes, factors affecting, 179 radappertization, 178

radicidation, 178 radurization, 179 sterilization, 178 legislation, 182 labelling, 182 laws, 182 Radura symbol, 182 need to improve sensory properties, 183 public perception, 182 Isochrysis galbana (microalgae), 385 Isocratic high performance liquid chromatography for measuring iodide, 401 Isoflavones, 437, 442 Isotope dilution capillary gas chromatography for measuring dioxin contaminants, 495

Japan egg production, 224 per capita consumption of eggs, 224 shell eggs stored, under refrigeration in, 166 washing and sanitization of shell eggs, 166 Japanese quail, 14 chick weight, 14 dietary nutrient requirements, 15, 17 egg. 314 eggshell cuticle thickness, 135 feathers coloration, 14 feed-to-egg conversion ratio, 14 hard-boiled egg, 14 iuvenile feathers appearance, 14 sex ratio bias, effect of corticosterone, 51 sexual identification, 14 uses, egg and meat, 14 Jinding, breed of duck, 23 Jungle fowl, 93

Khaki Campbell, breed of duck, 23 Kilogray, 178

Т

β-Lactam antibiotics, 529 Lactobacillus brevis, 238 Larus argentatus (herring gull), 477 Larus glaucescens (glaucous-winged gull), 478 Larus hyperboreus (glaucous gull), 478 Larvae, 598, 600 L-ascorbic acid, 297 Late blowing phenomenon, 237 Lathyrogens, 504-505 Lathyrus odoratus (chickling vetch or chickling pea), 500, 505 Lathyrus sativus (sweet pea), 500, 504 Laying hen. See also various entries starting with Laying hen cold stress, effect of, 300 enrichment of eggs, 385-388 heat stress, effect of, 300, 340 inclusion of fish oil into diets of, 373 intestinal microbiota balance stress, impact of, 291

left ovary follicular hierarchy of multiple sized growing ova or yolks, 320 metabolism of, dietary fat, 366 mycotoxins and respective biological effects, 587 mycotoxins, toxicological effects of, 585 origin of n-3 polyunsaturated fatty acids (PUFA) in egg, 366 Laying hen diet amino acids, nutritional recommendations, 312 analytical techniques, 315 amino acids, identification and quantity of. 315 protein and amino acids, digestibility of, 315 protein, quantity of, 315 protein body weight, effect on, 311 deficiency symptoms, 311 egg production, 311 egg size, 311-314 egg yolk/white proportions, 312 excess symptoms, 311 importance of, 309-310 improvement strategies, 315 ingredients, types of, 310, 311 quality of, 309 requirements, 310, 312 sources of major n-6 and n-3 fatty acids, 367 Laying hen performance dietary supplementation fish oil, 377-378 flax, 370 iodine, 397-398 ginseng, 333 linseed, 352 microalgae, 388 probiotics, 284 vitamin C, 300-304 Lead-free technology for preserved eggs, 427 Lectins, 504 Legislation on food irradiation, 182 labelling, 182 laws, 182 Radura symbol, 182 Leg mite, 600 Leuconostoc mesenteroides, 237 Liebig's law of the minimum, 309 Lifestyle, 226 Lighting analytical methods to assess light quality, 73 egg weight and quality, effect on, 71 light emitting diodes, 72 hen welfare, effect on, 71 physiological effects on hen, 65-67 sources of, 72 Lighting paradigms ahemeral lighting, 68 continuous lighting, 68 impact on egg laying, 67 photostimulation, 69-70 Light spectrum, 70 impact on laying hens' performances and behavior, 71 red-sensitive photoreceptors, 70

Linamarin, 350, 351 Linatine, 350, 351 Lincomycin, 529 α-Linolenic acid (ALA), 365 content, in egg, 370 Linseed, 349 analytical methods, assess digestibility of amino acids and energy. 362 antinutritional factors, 350-351 chemical composition of, 350 diet formulation, 362 effect on production performance, 352 body weight, 352, 353 egg production, 353, 355 egg weight, 353, 357 egg white, 358, 360 egg yolk weight, 358, 359 feed intake, 352, 354 shell traits, 361 fiber-degrading enzymes, 351 ingredient for, laying hen diets, 349 oil, source of energy, 350 sources of, omega-3 polyunsaturated fatty acids (PUFA), 349 top producer of, Canada, 349 use of 349 Linseed oil, 352 Linum usitatissimum (flax), 349, 367 Lipids and fatty acids composition fresh egg yolk, 419 salted egg yolk, 419 cyclopropenoid, 505 egg, 365 modifying profile, 365 erucic acid, 505 hypothesis on coronary heart disease, 189 oxidation, 277 Lipovitellins, 56 Liquid chromatography-mass spectrometry technique, 200 Listeria, 97 innocua, 161 ivanovii, 181 monocytogenes, 138, 160, 406 Listeriosis, 138 Long chain n-3 polyunsaturated fatty biosynthetic pathway, 374 human dietary intake, 383 Low-density lipoprotein (LDL) choles Low pathogenic avian influenza (LPAI 547, 548 LPAI virus in eggs, 550 Lutein, 199 analysis of, 200 contents in eggs/egg yolks/selected carotenoid grains, 201 Lycopenes, 7, 202 Lysozyme antibacterial mechanisms of, 235 antimicrobial activity, 234 as active pharmaceutical ingredient, classification, 233 contributions to animal health

immune stimulatory effects, 236 innate immunity, 233 natural antibacterial 233, 234 natural antiviral, 233 promotion of gut microbiome, 233 c-type vs. g- and i-type, 233 current food applications, 237 beer, 238 bioactive packaging, 238 cheese, 237 wine, 237 cuticle, presence in, 158, 159 dairy animals, concentration in milk, 233 discovery of, 233 eggshell matrix, 158, 159 extraction and purification from albumen, 234 affinity chromatography, 233 crystallization and precipitation, 233 direct membrane filtration, 233 gel filtration, 233 ion exchange chromatography, 233 ultrafiltration, 233 functional properties of, 233 high-isoelectric point of, 233 human milk, concentration in, 233 industrial applications, 233 lysozyme-derived products with high tryptophan content, 233 mode of action, 234 natural antibiotic, 233 physiological functions, 234 properties useful in food application heat-stable protein, 237 stable during freeze drying, 237 shell membranes, presence in, 159 structure, 234, 235 synthetic modification, 240 use in preserving foods, 238

Μ

	Magnum, of control hen, 321
	scanning electron micrograph, 566
	Malaysia
	per capita egg consumption, 224
acids	Mammillary layer, 262, 263
	Manihot esculenta (cassava), 500, 502
	Marinated eggs, 33
sterol, 189	Marketing competition, 229
J),	Marketing strategies, 229
	Matrix proteins, location in shell and
	membranes, 137
	Medullary bone, 324
	Meiosis, 47
high-	Meiotic spindle, 49
	Menacanthus stramineus (body louse),
	598
	Meningoencephalitis, 138
	Merozoites, 572
	Metallothionein, 57
, 233	Mexico
	egg production, 224
	per capita egg consumption, 224

Microalgae. See also Photoautotrophic microalgae alternative source for n-3 long chainpolyunsaturated fatty acids (PUFA), 384-385 disrupted microalgal biomass, 388 lipid and fatty acid content, 386 lipid extraction, 388 n-3 long-chain-polyunsaturated fatty acids (LC-PUFA) content in eggs, 386 omega-3 enrichment efficiency, 386 species of microalgae, 386 oil. 388 Micro-Kjeldahl techniques, 314 Microscopic cracking of shell, 131 Mineral content cooked whole egg and egg beaters vs. nutraceutical egg products, 275 Mites, 600 northern fowl, 600, 601 red, 600, 601 scaly leg, 600, 601 Molds, recovered from eggshells, 139 whiskers, 139 Moniliformin, 581 Morus bassanus (northern gannet), 478 Mouse skull, covered with propolis, 146 Mucin-producing cells, 292 Mucins (mucilage), 350 Mucor, 139 Mule (sterile) duck, 23 Mummification propolis, role of, 145 Musca domestica (housefly), 599, 601 immatures, 599 λ -Muurolene, 146 Mycoplasma gallisepticum (MG), 537 analytical methods, 544 isolation and detection, 544 manufacture of vaccine, 544 effects of chronic respiratory disease, 538 performance of, laying hen, 538 physiology of, laying hen, 538 intracellular invasion, 537 salpingitis, 538 S6 (S6MG) strains, 538 vaccines, live attenuated, 538 age of administration, 538 application methods, 538 FMG vaccine, 539 performance of, laying hens inoculated with, 539 superimposed on 6/85 MG and ts11MG, 542 weekly percentage hen day egg production, 540 use and transmissibility, 539 with dietary supplements, 543 6/85MG vaccine, 540 percentages of, liver weight/moisture/ lipid, 541 transmissibility of, 540 ts (temperature-sensitive) 11MG vaccine, 540

types, 538 vagina weight, 542 virulence and pathogenicity, 537 Mycoplasma iowae, 537 Mycoplasma meleagridis, 537 Mycoplasma synoviae, 537 Mycotoxin, 581 aflatoxins, 585-587 detection/measurement, 593-594 photofluorometric procedure, 593 egg production, 587 fumonisins, 589 mycotoxicoses, prevention of, 591-593 occurrence globally, in food-producing animal diets, 586 ochratoxin A, 590-591 poultry feeds, occurrence, 585 procedures for detection, 593 procedures for measurement, 593-594 residues in eggs, 591 effect on human health, 593 tolerance limits in poultry feed/feed ingredients, 592 toxicological effects in laying hens, 585 toxigenic fungi, 581-583 trichothecenes, 589-590 zearalenone, 590 Mycotoxin adsorbents, 593 Myrcene, 146

N

Nakonphatom, breed of duck, 23 Nannochloropsis, 384 oculata (microalgae), 385 National List of Allowed and Prohibited Substances for organic feed, 310 National Poultry Improvement Plan, 18, 29 National Research Council (NRC), 17, 25, 309.310 Natural selection based on survival, 113 Nematode (Ascaridia), 96, 597, 601 life cycle, 597 Nematode worms ascarids, 96, 601, 602 Neomycin, 529 Nest area, 80, 95 curtains, 80 lining, 80 nest usage, 80 Neuraminidase protein, 547, 548 Neutrase, use in preserved eggs, 416 Newcastle disease, 18, 29, 551. See also Newcastle disease virus Newcastle disease virus, 550, 551 analytical methods hemagglutination inhibition, 553, 555 intracerebral pathogenicity index, 556 egg production, impact of infection, 553 vaccination, 553 laying hens, experimental infection of, 552-553 pathogenesis of reproductive tract, 552-553 pathotypes, 552 asymptomatic enteric, 552

mesogenic, 552 velogenic neurotropic, 552 velogenic viscerotropic, 552, 554 strain classifications and definitions, 551-552 structure of, 552 transmission and spread of, 553-555 vertical transmission of, 553 zoonotic potential, 555 New World quail, 13 California quail, 13 Northern Bobwhite quail, 13 Niacin, 208, 213, 215, 216 Nicarbazin, 575 Nicotinamide adenine dinucleotide (NADH), 215 Nicotinamide adenine dinucleotide phosphate (NADPH), 215, 587 Nifuroxazide, 457 Nifursol, 457 chemical structure of, 458 metabolite (3, 5-dinitrosalicylic acid hydrazide or DNSAH), 457, 458 Nitriles, B-aminopropionitrile laying hen performance and egg quality, effect on 505 Nitrofurans analytical techniques, 461 analytical approach, 462 sample preparation, 462 bactericidal activity, 458 bioavailability to the avian embryo, 457 characteristics of, 457 synthetic chemotherapeutic agents, 457 chemical structures of, 458 drug residues in chicken egg products, 461 chicken eggs, 460-461 eggshell, 461 metabolites of, 350, 457 monitoring in, food and by-products, 459-460 mutagenic, toxic effects, 458-459 regulatory framework, prohibition of, 459 side-chain metabolites, structures of, 458 use of, 459 Nitrofurantoin, 457 Nitrofurazone chemical structure of, 458 metabolite (semicarbazide), 457, 458, 460 Nitroreductase, 458 Nivalenol intoxication, 589 Nonattenuated vaccines for coccidiosis, 575 Nonessential amino acid content cooked whole egg and egg beaters vs nutraceutical egg products, 274 Nonrandom chromosome segregation, 49 Northern fowl mite, 96, 600 Nutraceutical egg products amino acid content, 274 analytical methods, 278 amino acid analysis, 278 cholesterol, 278 mineral analysis, 278 w-3 fatty acids, 278 cholesterol content, 273, 275 color properties, 272 consumer acceptability, 276-277

lentogenic, 552

development with omega-3 fatty acid rich oils, 272-273 fatty acids content, 276 fortified with omega-3 polyunsaturated fatty acids (PUFA) market, 278 marketing strategies, 278 nutritional composition, 273-275 omega-3 fatty acid content, 275 oxidative stability, 277 potential health benefits, 278 sensory quality, 276-277 texture properties, 272-273 Nutrient compositions duck eggs vs. chicken eggs, 27 quail eggs vs. chicken eggs, 16 Nutritionally enhanced eggs, 210, 271, 365, 373, 384, 397

0

Oceanodroma leucorhoa (Leach's stormpetrels), 479 Ochratoxin A, 583, 586 chemical structure of, 585 intoxication effects, 591 toxin effects, 590 Odontophoridae family of birds, 13 Oenococcus oeni, 236 Office International des Epizooties (OIE), 555 Old World quail, 13 Common quail, 13 Japanese quail, 13 Oleic acid, 375 Omega-3 fatty acid, 7 health benefits, 383-384 Omega-3 (n-3) polyunsaturated fatty acids in eggs, 366 Omega-6 (n-6) polyunsaturated fatty acids in eggs, 366 Omega Tech, 278 Omphalitis, 524 Oocysts, 571, 573, 602 live vaccines, 576 Oophoritis, 524, 525 Organic (ecological) egg production, 90 Organic eggs, 90, 105 cage-free, 105 hen antibiotic avoidance, 4, 105 no animal by-products in hen's feed, 105 no dietary synthetic additives, 105 no grains from genetically modified crops, 4,105 no grains from land using synthetic fertilizers last three years, 4, 105 outdoor access, 90, 105 Organic feed National List of Allowed and Prohibited Substances, 310 Organic rearing system effect on, egg mineral content, 105 hazardous of, heavy metal residues in, 107-108 influences on, fatty acid composition of, eggs, 105 mineral content of, edible portion and shell of eggs, 106

production of, organic eggs, 90, 105 trace element concentration in egg, 107 vs. conventional eggs, 106 techniques and vield of, 246 Ornithonyssus species, 600 tetrapeptides, derived from, 244 Ornithonyssus sylviarum (northern fowl mite), 96, 600, 601 use of ethanol, 245 Osteoid shell matrix, presence in, 158, 159 mineralization, 323 shell membrane, presence in, 158, 159 Osteolathyrogens, 505 structure of 243 Osteomalacia, 322 apo-(iron free) forms, 243 Osteoporosis, 325 holo-(iron bound) forms, 243 Osteoprotegerin (OPG), 324 use of, 243-245 Ostrich Ovulation, 5, 320 dietary protein, influence of, 314 influence of dietary recommendation for calcium and 26 h ahemeral cycle, 69 phosphorus for reproductively 14 h photoperiod, 68 active female, 322 Oxidative stability of omega-3 fatty acids in eggs, 39-40 fish oil, 376 eggshell, 40 hard boil, 40 Р high nutritional value, 40 improvement strategies, 41 Pagophila eburnean (ivory gull), 478 shape index 40 Paknum, breed of duck, 23 soft boil, 40 Palecanus onocrotalus (white pelican), 135 storage of hatching eggs, 40 Panax ginseng, 331 vitamins concentration phytochemical composition of, 331 vs. chicken eggs, 40 Pancoxin, 576 weight, 40 Pandion haliaetus (osprey), 476 estrogen concentrations, 441 Pantothenic acid, 208, 213-216 laying performance, 39 Paracox, 576 peak egg production age, 39 Parasite management options, 603 sexual maturity, 39 hen condition, 603 Ovalbumin, 57, 254 housing effects, 603 Ovalbumin-related protein (OVAX), cage free/free range, 603 158, 159 conventional cages, 603 Ovary, 320 enriched cages, 603 follicular hierarchy of multiple sized growing sanitation/biosecurity, 603 ova or yolks, 320, 321 Parasites, in laving hen Oviduct, 321 analytical methods, 604 funnel-shaped infundibulum, 263, 320 ascarid egg content, in feces, 604 isthmus, 263, 320 ectoparasite infestation estimates, 604 magnum, 263, 320 fly population estimates, 604 red isthmus, 263 housing systems, effect of, 597, 601 uterus or shell gland, 263, 320 monitoring parasite infestations, 604 Oviposition, 5, 125, 320 pests, life cycles of, 597-600 Ovocalyxin, 158, 159 external parasites Ovocleidin-17, 158, 159, 161 Alphitobius diaperinus (darkling Ovoinibitor, 158, 159 beetle), 600 Ovostatin, 158, 159 Cimex lectularius (bed bug), 599 Ovotransferrin, 57, 243 Dermanyssus gallinae (red mite), 600 antiinflammatory activities, peptides derived Echidnophaga gallinacea from. 245 (sticktight flea), 599 antimicrobial activity, 243 insects, 598 antioxidant properties, 244 Knemidocoptes mutans (scaly leg antiviral activity toward Marek's disease mite), 600 virus in vitro, 244 Menacanthus stramineus (body bacteriostatic property, 244 louse), 598 cuticle, presence in, 158, 159 Musca domestica (housefly), 599 peptides derived from, 245, 247 Ornithonyssus sylviarum (northern fowl separation of, 245, 247 mite), 600 diethylaminoethyl (DEAE) Affi-Gel Blue internal parasites methods, 245 Capillaria spp. (nematode), 598 ion exchange chromatography, 245 nematode, 597 O-sepharose fast flow column, 245 protists, 597 S-Ceramic HyperD F cation exchange strategies to prevent red mite infestation, 603 column, 245 Parasitic infections, 465

Index 619

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), 245 Toyopearl CM-650M cation exchange, 245

Parathyroid hormone-related protein (PTHrP), 324 Parus major (great tit), 478 Pasta, 251 analytical techniques for determination of egg content and quality, 256-257 Liebermann-Burchard reaction, 256 base materials of semolina and eggs, 251 drying process, 251 drying treatment, 253 durum wheat semolina, 251 extrusion process, 252 flow sheet of production, 253 lamination, 252 manufacturing, 251 minimum egg content and, admissible types of eggs for, 252 nonchicken eggs, in pasta production, 255-256 pasteurization/sterilization steps, 251 pasteurization thermal treatment, 253 physicochemical properties, 253 role of eggs on, pasta quality, 254 color, 254 consumer's perception, 254 degradation of, tocols and carotenoids, 255 dried albumen, 256 nutritional value, 255 sterol content, 254 texture, 254 shaping process, 252 Pasteurella multocida (fowl cholera), 96 Pasteurization, 165 nonthermal pasteurization, 169, 170 electrolysis, 170 irradiation, 169, 178 Salmonella Enteritidis contamination, 170 surface, in shell eggs, 170 methods of electrolyzed oxidative water, 170 microbial safety, 170 quality of shell eggs, 170 gas plasma, 172 ozone, 171–172 pulsed light technology, 171 ultraviolet light, 171 microbial effectiveness, 171 thermal, in shell egg, 168 drawbacks of, 168 methods of hot-air, 168 humid-air, 169 microwave, 169 radiofrequency, 169 water immersion, 168 requirements for whole chicken egg, 168 shelf life of egg, 168 Pasture rotation, 94 Peafowl sex ratio bias, effect of corticosterone, 51 Pediococcus damnosus, 238 Pekin breeds, 23 Pelecanus occidentalis (brown pelican), 477 Pelleted food vs. mashed food relative to feather pecking, 115 Penicillin, 529

Pennsylvania 1983 H5N2 virus, 550 Peptidoglycan, 234 Perches, 80, 115 enriched cages, 81, 82 escape from unwanted social interaction, 115 feather pecking and cannibalism, effect of, 115 feather quality, effect of, 80 hen motivation for 80 skeletal and muscle health, 80, 115 Peristalsis of oviduct, 320 Peritonitis, 524, 525 Pest infestations, habitat complexity effect cage-free indoor systems, 602 conventional cages, 601 enriched cages, 602 free-range systems, 602 hen housing systems, 601 Pests, life cycles of, 597-600 external parasites Alphitobius diaperinus (darkling beetle), 600 Cimex lectularius (bed bug), 599 Dermanyssus gallinae (red mite), 600 Echidnophaga gallinacean (sticktight flea), 599 insects, 598 Knemidocoptes mutans (scaly leg mite), 600 Musca domestica (housefly), 599 Ornithonyssus sylviarum (northern fowl mite), 600 internal parasites Capillaria spp. (crop and intestinal nematode), 598 nematode, 597 protists, 597 Phaeodactylum, 384 tricornutum (microalgae), 385 Phalacrocorax auritus (double-crested cormorant), 477 Phaseolus vulgaris (common bean), 506 Phasianidae family of birds, 13 Pheasant hen dietary recommendation of calcium, phosphorus, and vitamin D₃ for reproductively active female, 322 storage conditions, hatching eggs, 129 Phenolic compounds, 505-507 condensed tannins, 506 gossypol, 506 sinapine, 507 Phosphorus dietary recommendation for reproductively active females, 322 Photoautotrophic microalgae, 384-385 docosahexaenoic acid (DHA) content, 384 eicosapentaenoic acid (EPA) content, 384 total lipid, 384 Photorecentors, 66 extra-retinal (brain), 70, 72 retinal. 72 cones, 72 Phytoestrogens, 442 Pickled eggs, 33 formulations ingredients, 409 microbiological safety, 405

Penicillium, 139, 583

acidity, 405 pH, 405 pH measurement, 406 processing, 408 production, 407-411 acidification, 409 cold-fill-hold commercial processes, 410 cooking 408 formulations, 408 heat-treated, 410 hot-fill-hold commercial processes, 410 hot-water bath process, 407 ingredients, 408 nonheat-treated, 411 packaging, 409 peeling, 408 shelf life, 411 stabilization 410 storage, 411 pulsed vacuum acidification, 411 regulations, 406-407 safety concerns, 406-407 storage, 405 water activity, 406 Pickling, 405 Pidan appetizer, use as, 28 formation method, 28 coating method, 28, 415, 416, 428 immersion method, 28, 415, 416 Pine-flower eggs, 427 Pisum spp. (filed peas), 506 Plant saponins, 331, 503 Plant toxins, 499, 500 Plasma cholesterol in humans, 191 Plasma, measurement of calcium, 326 parathyroid hormone, 327 phosphorus, 327 vitamin D, 326 Plastic egg flats advantages, 128 Plumping of egg during its formation, 320 β -aminopropionitrile, effects on, 505 PMEL17-gene, 114 pleiotropic effect on plumage color and behavior, 114 Polybrominated diphenyl ethers as flame retardants, 475 alternative flame retardants, impact on environment and wildlife, 480 analytical method for measurement, 480 chemical structure, 476 composition of, three flame retardant commercial products, 476 contamination in chicken and duck eggs, 479-480 contamination in wild bird eggs, 477-479 temporal trends, concentration in wild bird eggs, 478-479 toxicological impacts on avians, 476 Polychlorinated dibenzo-p-dioxins, 487, 492, 494 Polyunsaturated fatty acids (n-3 PUFA), 36, 271.383 in human diets, 366

pertinent safety parameters, 405-406

Position of egg during storage, 130 Poultry. See also various entries starting with Poultry acute primary mycotoxicoses, 585 dioxin crisis, 494 global invcotoxin occurrence in diets, 586 use of antibiotics and probiotics, 531 Poultry diets protein-rich ingredients nutritive value 311 Poultry houses wavelength and currents of, light sources installed in, 72 Poultry Products Inspection Act, 18, 29 Poultry species, a comparison of egg traits chemical composition, 35 cholesterol content, 36 essential amino acid content, 35 mineral content, 38 proportion of albumen, yolk, and shell, 34 vitamin content, 38 weight, 34 volk fatty acid content, 36 PremiTest, 448 Preserved egg elements and distribution characteristic, 428-431 minerals in duck egg albumen, 430 minerals in duck eggshell, 428-430 minerals in duck yolk, 431 human daily intake of minerals from consuming a preserved duck egg, 431 in comparison to recommended daily intake, 431 lead poisoning, 431 processing methods, 428 packaging or coating, 28, 415, 416, 428 soaking or submersion, 428 soaking or submersion without lime, 415, 416, 428 use of acids to thin shell, 416 alternatives, organic acids and proteases, 416 processing principles, 427-428 addition of metallic compound (iron, zinc, or copper), 427 calcium chloride as an alternative, 427 liquidation, solidification, discoloration, and maturation, 428 pickling by strong alkali, 427 Protein Probiotics analytical techniques, 292 enumeration and typing of intestinal microbiota, 292 histology of intestinal mucosa, 292 avian pathogenic Escherichia coli (APEC), 530 biological mechanism, 290 efficacy variation, 291 egg composition, effect on, 289 volk cholesterol, effect on, 290 egg-laying performance, effect on, 284, 285 egg weight, effect on, 286 feed additive for laying hens, 283-284

feed utilization, effect on, 286, 287 Psidium guaiava (common guava), 530 internal egg-quality traits, effect on, 288, 289 PUFA. See Polyunsaturated fatty acids (PUFA) Pulsed vacuum acidification, use in pickled other egg-laying species, effect on, 291 shell-quality traits, effect on, 286-288 eggs, 411 stress in laying hens, impact on intestinal Purchaser preferences, 228 microbiota balance, 291 Pygoscelis antarctica (penguin), 478 Production of eggs worldwide, trends in, Pygoscelis papua (penguin), 478 223 224 Pyridoxine, 208, 213, 215, 216 Propolis and its extracts Pyrrolizidine alkaloids, 500 analytical methods, 154 ethanol extraction method, 154 0 flavonoids colorimetric assay, 154 gel filtration columns of Sephadex LH-20, 154 high performance liquid chromatography, 154 phenolic content of crude propolis color-oxidation-reduction reaction, 15 antimicrobial effects, 150-152 Gram-positive bacteria vs. Gram-negative bacteria, 150 chemical composition affected by extraction method, 146 solvent, type of, 146-148 geographical region, 146, 147, 149 season of the year, 146 vegetation, type of, 146 composition, 145 flavonoids, 145 phenolic acids, 145 sugars, 145 terpenes, 145 description, 145-148 flavonoid content, 146, 147 in vitro antimicrobial effects, 151, 153 in vivo antimicrobial effects on eggshells, 151-152 during incubation, 154 phenolic acid content, 146, 149 production by honeybees, 145 shelf-life of eggs, 152–153 strategies for improvement, 154 identification of most biologically active compounds, 154 minimum dose to reduce microbial contamination and extend shelf life 154 structural integrity of hive, 145 uses, 145 digestibility determination, 315 measurement, 314 Kieldahl method, 314 Proteinase inhibitors, 504 laying hen performance and feed efficiency effect on, 504 Protein-bound calcium vs. ionized unbound calcium, 319 Protein food sources comparison of, average cost in United State dollars, 225 Proteomic, used to identify eggshell protein, 158 Protozoan parasites of Eimeria, 571 Pseudomonas aeruginosa, 137, 160

Index 621

	Y Y
	Quail. See also Japanese quail
	common diseases, 18
	dietary nutrient requirements, 15, 17, 314, 322
	domestication, 13
	egg-laying capabilities, 14
54	exogenous estrogen, effect of, 439, 440
	Galliformes order, 13
	heat stress, response to, 337
	housing, 15
	cage, 15
	combination litter-cages, 15
	floor, 15
	life cycle
	growth and development, 14
	incubation period, 14
	number of quail and eggs by top countries, 13
	organic production, 15
	species of, 14
	thermoneutral zone, 337
	use of, 13
	Quail eggs
	characteristics, 14
	mottling pattern, 14
	nutrient content, 14, 16
	proportion of yolk, albumen, and shell, 14
	shell color and thickness, 14
	weight, 14
	consumption and uses, 13
	food safety issues, 18–19
_	primary preventative practices, 18
e	processing, 19
	storage, 19, 129
	veterinary drug residues, 18
	hatching eggs
	storage conditions, 129 use of propolis, 151, 153, 154
	marketing strategies, need for, 19
	nutritionally enhanced using dietary
	supplementation
	flaxseed, 19
	genistein, 19
	heepseed, 19
у,	lycopene, 19
	palmitate retinol, 19
	Rhodobacter capsulatus, 19
	zinc and selenium, 19
	production and processing regulations, 18
es	Salmonella enteritidis infection, 18
	value-added, 18
	balut or boiled embryo, 18
	cooked and canned, 18
	pickled, 18
	preserved or salted, 18

Quantitative computed tomography (OCT) for assessing bone mineralization, 327 Quantum satis, 237 Ouercetine, 154

R

Radiation, 178. See also Gamma irradiation category, 177 ionizing, 177 nonionizing, 177 definition, 177 Receptor activator of nuclear factor kappa-B ligand (RANKL), 325 Red isthmus, 263 Red jungle fowl, 3, 116 eggshell cuticle thickness, 135 Red mites, 600, 601, 603 Red-winged blackbirds, physical parameters of egg, 52 Reproductive axis, 65-67 control by light, 65-67 sexual maturation, 67 hypothalamo-pituitary-gonadal axis, 65, 66 open period, 67, 68 Residual feed intake, 30 Resilience, texture property of cooked egg products, 272 Retinal photoreceptors, 66, 72 Retinol, 207-209. See also Vitamin A Retinyl esters, retinal, 207 Rhizopus, 139 Rhode Island Red fearfulness and serotonin, 113 Rhodobacter capsulatus, 19 Rhodotorula (veast), 139 Riboflavin, 208, 213, 215, 216 Riboflavin binding protein, 158, 159 Ricinus communis (castor bean), 500, 504 Riemerella anatipestifer, 30 Rissa tridactyla (black-legged kittiwakes), 479 Russia egg production, 5, 224 per capita egg consumption, 224

S

Saccharomyces cerevisiae yeast enriched with copper, 104 Saccharomyces yeast, effect on lysozyme during wine making, 236 Salmonella analytical methods in poultry and eggs, 518-519 detection in eggs, 519 detection in environments, 518 detection in flocks, 518, 519 control of alternative housing, 517-518 genetic selection of hens with increased resistance, 7, 519 regulatory requirements in commercial production egg processing, 127, 516 egg production, 516

production cost of, 517 egg processing, 517 egg production, 7, 516-517 flock testing, 517 flock vaccination, 7, 517, 519 economic impact, 515 food poisoning, 138 furnished or enriched cages vs. conventional cages, 518 vs. noncage housing, 140 nitrofurans, treatment for infection with, 457 propolis, effect of, 151 public health concern, 515 risk factors, 515 serovars other than Enteritidis Heidelberg, 518 Kentucky, 518 Sofia, 518 Typhimurium, 518 transmission, 515-516 Salmonella enterica, 226, 515 Salmonella enteritidis, 7, 29, 127, 137-139, 160, 165, 406, 417, 515-519 Salmonella typhimurium, 140, 141, 181, 518 survival on eggshell surface of unwashed egg incubated at different temperatures, 142 Salpingitis, 524, 525, 530, 538 Salpingoperitonitis, 524, 525 Salted duck eggs alternative uses, 421 antibacterial activity, 417 characteristics, 415-416 chemical composition, 417 Salted egg yolk scanning electron microscopic photographs, 421 transmission electron microscopic photographs, 421 Salting of duck eggs brining method, 415, 416 vs. coating method, 416 chemical composition, effect on, 417-418 lipids, 418 proteins, 418 water and mineral, 417 coating method, 28, 415, 416, 428 low-salt preserved egg using rice straw pulp, 416 physicochemical properties, effect on, 419-420 egg white liquefaction, 420 oil exudation, 419, 421 yolk hardening, 418, 419 rheological behavior of yolk, 420 sol-gel transition, 420 role of salt in preservation, 415 salt concentration in preserved egg, 416 schematic of processes involved in making preserved egg, 423 texture, effect on, 416 time required to preserve eggs, 416 yolk preservation separate from albumen, 417 Salvia hispanica (chia), 367

risk reduction practices in commercial

San heetles, 581 Saponification reaction during preserved egg processing, 427 Saponins, 500, 503 SBM, See Soybean meal (SBM) Scaly leg mite, 600, 601 Schizogony, 571-572 Schizonts, 572, 575 Scratch pad, 81-83 Senna obtusifolia (sicklepod or coffeeweed), 500, 508 Senna occidentalis (coffee senna), 500 Senna spp., 508 Serratia marcescens, 160 Sesbania drummondii (poison bean or rattlebush), 500, 508 Sesbania macrocarpa (bigpod sesbania), 500, 508 Severe feather pecking characteristics, 112 Sex ratio analytical methods, 52 agarose gel electrophoresis, 52 blastodisc isolation, 52 hormone analysis, 52 sexing of chicken eggs, 52 corticosterone influence on follicular steroidogenesis, 51 relation with, 50-52 egg mass, effect of, 52 female parental stress, relation with, 50-52 follicle-stimulating hormone, 48 follicular growth rates, 48 food availability, effect of, 50 glucocorticoids, effects of, 51 gonadal sex steroid hormones, relation with, 49-50 heavier female parents, effect of, 50 improvement strategies to manipulate sex offspring, 52 physical parameters of egg, relation with, 50-52 sex allocation theory, 52 sex-specific differential investment, 52 sexual dimorphism, 52 potential mechanisms, 47-49 postovulatory, 47 preovulatory, 47 asynchronous sex-specific follicular development, 47, 48 segregation distortion or meiotic drive, 47,49 selective resorption of postmeiotic and preovulatory follicle, 47, 49 primary sex ratio bias, 47 primary vs. secondary sex ratio, 47 progesterone, effect of, 50 proposed mechanisms, 48 testosterone, effect of, 50 rapid yolk deposition, 48 sex chromosomes, 47 sex determination, 47 Sex steroids, 65, 66 influence on sex ratio, 47, 49-50 production by cells of follicular wall, 49, 437

Shaoxing, breed of duck, 23 Shelf-life of eggs, 125 pasteurized in shell eggs, 168 propolis, effect of, 152-153 Shelf-stable acidified foods federal regulations, 406 Shell egg. See also Eggshell elimination of Salmonella Enteritidis, goal of 173 internal temperature thermocouple probe, determination by, 132 pasteurization, See also Pasteurization nonthermal, 169-172 irradiation, 169, 179 surface, in shell, 170-172 thermal, 168-169 rapid cooling, 131, 172 surface temperature infrared thermometers, determination by, 132 washing, 165-168 Shell formation, 320, 324 Shell-less egg vs. normal white hard-shelled egg, 322 Showy crotalaria, 500 Siberian ginseng, 332, 333 Sinapine, 505, 507 Single-staged incubators, 131 Skeletal health and integrity, 327 exercise, effect of, 325 genetic selection of primary breeders. 325, 326 nutritional manipulation, 326 calcium, 321 phosphorus, 323 vitamin D, 322 Sodium bicarbonate use of in counteracting heat stress, 342 Sodium chloride pathogens growth, role in, 415 preservation, role in, 415-416 Т Soft ticks, 601, 602 Soiled eggs reduction in, 127 separation to prevent cross-contamination, 127, 128 Solanine, 501 Solanum tuberosum (potato), 501 Somateria mollissima (eider), 478 Song Dynasty, 13 Songhua dan, 427 Sorbutamin, 297 Sorghum bicolor (sorghum or milo), 500 Sorghum tannins, 500, 506 Soybean meal (SBM), 309-311 Soy eggs, 33 Spathulenol, 146 Sphingolipids, biosynthesis affected by fumonisin B₁, 589 Sporulated oocysts, 571, 575, 597, 598 Sporulation, in relation to coccidiosis, 571, 573 Springiness, texture property of cooked egg products, 272 Standard Reference Material, 193 Staphylococci, 524

propolis, effect of, 151 Staphylococcus epidermidis, 244 Staphylococcus mutans, 244 Staphylococcus saprophyticus, 244 Stercorarius skua (great skua), 478 Sterculia foetida (java olive), 500, 505 Sterna antillarum browni (California least tern), 477 Sterna caspia (California least Caspian tern), 477 Sterna forsteri (Forster's tern), 477 Steroid alkaloids, 501 Sticktight flea, 599, 601 Streptomyces griseus proteinase B, 160 Stressors, effect on chicken, 300 cannibalism, relation to, 111 cold stress, 300 feather pecking, relation to, 115 heat stress, 300, 337, 339 physiological response, 113 Sturnus unicolor (starling), 478 Sturnus vulgaris (starling), 476 Subcutaneous infection model for colibacillosis, 532 Sulfanilamide residues in eggs, 450-451 boiling effect, 451 frying effect, 452 Sulfaguinoxaline, in control of coccidiosis, 574 Sulfonamides, 529 Superoxide dismutase, 297 Swine diets, global mycotoxin occurrence, 586 Swollen head syndrome, 524 Sympatho-adrenal axes stressor, effect of, 113 Syneresis, 277 Synthliboramphus antiquus (ancient murrelets), 479

244, 406, 417

Table eggs, 33, 229 marketing trends, 229 storage, 127-128, 166 Taeniopygia guttata (zebra finch) sex ratio bias, effect of corticosterone, 51 Tandem mass spectrometry, 495 Tapeworms, 600, 602 Tea eggs, 33 Tegal, breed of duck, 23 Tetracycline, 448, 450, 452, 529 Thermal conductance, 337, 338, 598 Thiamin, 208, 213, 215, 216 Thin-layer chromatography, detection of mycotoxins, 585, 593 Thiobarbituric acid reactive substances (TBARS), 276-277, 376 Thiophanate, 465 Thyroid hormones, 393 synthesis, 394 Toll-like receptors (TLRs), 526 Toxoplasma gondii (parasite), 96 Trabecular bone, 324 Transcriptomic, used to identify eggshell protein, 158

Index 623

Staphylococcus aureus, 137, 138, 160, 181,

Transiently expressed in neural precursors (TENP), 158, 159 Trichothecenes, 583, 589–590 chemical structure of, 584 T-2 toxin, 590 <i>Tropane alkaloids</i> , 500, 501 Trypsin inhibitors, 350, 352, 367, 500, 504 T-2 toxin, 590 Turkey breeder hen dietary recommendation of calcium, phosphorus, and vitamin D ₃ , 322 hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk fatty acid and cholesterol content, 36, 39 Turkey X disease, 581
Trichothecenes, 583, 589–590 chemical structure of, 584 T-2 toxin, 590 Tropane alkaloids, 500, 501 Trypsin inhibitors, 350, 352, 367, 500, 504 T-2 toxin, 590 Turkey breeder hen dietary recommendation of calcium, phosphorus, and vitamin D_3 , 322 hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
chemical structure of, 584 T-2 toxin, 590 <i>Tropane alkaloids</i> , 500, 501 Trypsin inhibitors, 350, 352, 367, 500, 504 T-2 toxin, 590 Turkey breeder hen dietary recommendation of calcium, phosphorus, and vitamin D ₃ , 322 hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39
T-2 toxin, 590 <i>Tropane alkaloids</i> , 500, 501 Trypsin inhibitors, 350, 352, 367, 500, 504 T-2 toxin, 590 Turkey breeder hen dietary recommendation of calcium, phosphorus, and vitamin D ₃ , 322 hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
Tropane alkaloids, 500, 501 Trypsin inhibitors, 350, 352, 367, 500, 504 T-2 toxin, 590 Turkey breeder hen dietary recommendation of calcium, phosphorus, and vitamin D ₃ , 322 hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
Trypsin inhibitors, 350, 352, 367, 500, 504 T-2 toxin, 590 Turkey breeder hen dietary recommendation of calcium, phosphorus, and vitamin D ₃ , 322 hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39
T-2 toxin, 590 Turkey breeder hen dietary recommendation of calcium, phosphorus, and vitamin D ₃ , 322 hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
T-2 toxin, 590 Turkey breeder hen dietary recommendation of calcium, phosphorus, and vitamin D ₃ , 322 hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
dietary recommendation of calcium, phosphorus, and vitamin D ₃ , 322 hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
phosphorus, and vitamin D ₃ , 322 hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39
hatching eggs, 38 heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39
heat stress, response to, 337 intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
intensive husbandry systems, 38 number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
number of eggs laid, 38 reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
reproductive period, 38 Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
Turkey eggs, 38–39 amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
amino acid content, 35 energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
energy concentration, 39 food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
food source, 38 from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
from Hybrid Large White, Big 6, and WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
WAMA strains, 39 hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
hatching, used for, 38, 39 hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
hatch rate, 39 light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
light cream shells, 39 mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
mineral content, 38 proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
proportion of albumen, yolk, and shell, 34, 39 proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
proportion of water, protein, fat, and ash, 35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
35, 39 storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
storage conditions, 129 vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
vitamin content, 38 weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
weight, 34, 38, 39 yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
yolk content, 39 yolk fatty acid and cholesterol content, 36, 39
yolk fatty acid and cholesterol content, 36, 39
• •
Tylosin, 529
1910011, 527

U

-
Ultimobranchial gland, 324
United Egg Producers, 79, 84
United Nations Food and Agriculture
Organization, 4
United States, 78
animal welfare legislation, 78–79
federal, 79, 84
state, 78
ballot initiative, 78
antimicrobial resistance, 529
cholesterol scare, 226
demands by, retailers and consumers, 79
diseases
avian influenza, 547
low pathogenic avian influenza in
quail, 18
coccidiosis
in chickens used for egg production
approved drugs, 574, 575
vaccines, 575
in egg-laying turkeys
approved drugs during rearing, 576
vaccine, 576
in gamebirds
approved drugs during rearing, 577
human salmonellosis, 226, 515, 518

United States (cont.) Mycoplasma gallisepticum infection in egg laying chickens, 537 vaccines available, 538, 540 duck eggs importation of preserved eggs, 30 regulatory environment, 29 egg production, of chickens, 5, 33, 77, 223.224 egg weight range, of chicken eggs, 9 emu eggs, 40 free-range egg production, 229 grain and soybean production, 225 green house gas emissions, 227 housing of laying hen chickens, 77, 226, 577,603 marketing of chicken eggs, 229 organic duck production, 28 organic quail production, 15 ostrich eggs, 39 per capita consumption of chicken eggs, 224, 225 per capita consumption of further processed chicken eggs, 225 percentage of world contribution of chicken eggs, 224 public perception, 79 purchasers of chicken eggs, 229 regulatory environment, 18, 29, 516, 517, 519 mycotoxin in poultry feed and feed ingredients, 592 shell eggs stored, under refrigeration in, 19, 166 washing and sanitization of shell eggs, 166, 228, 517 washing eggs in, 165 United States Department of Agriculture (USDA), 29, 89, 90, 192, 539, 547 United States Department of Agriculture Food Safety and Inspection Service (FSIS), 18, 29 Uria aalge (guillemot), 478 USDA. See United States Department of Agriculture

V

Vaccination avian influenza, 550 avian pathogenic E. coli (APEC), 530 coccidiosis, 575-576 infectious bronchitis, 566 Mycoplasma gallisepticum, 538 Newcastle, 553 salmonella, 7, 517, 519 Vacuum impregnation treatments, 411 Vasodilation of surface blood vessels, 341 combs and wattles of chickens, 341 Very low density lipoproteins (VLDL), 56, 193, 194, 365, 366 Vicia faba (fava or horse beans), 500, 503 Vicia sativa (common vetch), 500, 503 Vicine, 500, 503 Vietnam 2011 H5N1 avian influenza virus, 550

Villi, intestinal cells of affected by Eimeria schizonts, 572 Virginiamycin, 529 Viridiflorene, 146 Virulence gene profiles for avian pathogenic Escherichia coli (APEC), 528 Vitamin A, 207-209, 212, 216 Vitamin B₁₂, 208, 213, 215, 216 Vitamin C antioxidant during stress, role as, 299 biosynthetic pathway, 298 dietary supplementation chicken egg layers, 300 Japanese quail, 305 other breeds of chickens, 305 laying hen performance traits, effect on. 300-304 albumen quality, effect on, 304 albumen yield, effect on, 304 body weight, effect on, 304 egg production, effect on, 300 eggshell quality, effect on, 301 ultrastructure of eggshell, effect on/304 egg weight, effect on, 304 feed efficiency, effect on, 304 feed intake, effect on, 304 mortality, effect on, 304 yolk color, effect on, 304 yolk quality, effect on, 304 yolk yield, effect on, 304 measurement of, 305 oxidation of, 305 physiological role, 297-299 antioxidant, 297 calcium regulation, 299 collagen formation, 299 immunostimulant, 299 antibody formation, 299 phagocytic activity, 299 Vitamin chelators as antimicrobials, 160 Vitamin D, 208-211 dietary recommendation for reproductively active females, 322 hen health, effect on, 322 25-hydroxycholecalciferol (25OHD₃), 210 Vitamin E, 207, 208, 211-212, 215, 216 antioxidant effect, 7 Vitamin K, 208, 212, 216 Vitamins, 207, 208. See also Vitamin A, C, D, E, K, water soluble biotin deficiency, 214 daily recommended intake in humans, 216 relative to vitamin superfortification of egg, 216 fat soluble, 207 intestinal absorption, 207 levels in eggs from alternative production systems, 215 sensory/functional property/toxicity, 216 water soluble, 213 absorption through passive diffusion, 213 biotin (B7), 208, 213-216 folic acid (B₉), 208, 213-215 niacin (B₃), 208, 213, 215, 216 pantothenic acid (B₅), 208, 213-216

pyridoxine (B₆), 208, 213, 215, 216 riboflavin (B2), 208, 213, 215, 216 thiamin (B1), 208, 213, 215, 216 vitamin B12 (cobalamine), 208, 213, 215, 216 yolk, primary reservoir, 207 Vitelline membrane, 125 Vitellogenin, 56, 193, 365, 366 Vitellogenin-2 cuticle, presence in, 158, 159 eggshell matrix, presence in, 158, 159 eggshell membranes, presence in, 158, 159 VLDL. See Very low density lipoproteins (VLDL)

W

White-crowned sparrow sex ratio bias, effect of corticosterone, 51 White Leghorn egg human consumption, reasons for popularity, 33 White Leghorn hen, 305, 506, 564, 571, 590, 591 calcium and available phosphorus intake, 265 dietary recommendation for calcium, phosphorus, and vitamin D₃, 322 enriched colony housing, 78 fear behaviors, 113 genetic advances in egg production, 192 keel bone S-shaped curvature during necropsy, 323 White Leghorn pullet, 319 White Pekin ducks nutrient requirements, 25 White pelican eggshell cuticle thickness, 135 Wine, 237 malolactic fermentation, 237 use of lysozyme, 237 Wood shavings, 114 World Health Organization, 393, 420 World's top egg producing countries, 5

X

Xanthophyll chemical structure of, 199, 200 cooking and processing, effect on yolk content, 203 lutein, zeaxanthin, and other carotenoids in yolk, 199, 202 organic eggs, 202 synthetic, 199-200, 202 yolk color, effect on, 9

V

Yolk. See also Egg carbon dioxide content, measurement of, 132 carotenoids, 5 age-related macular degeneration, role in. 6 antioxidant, 6 cataracts prevention, role in, 6 enriched eggs, 7 lutein, 6, 199, 202 zeaxanthin, 6, 199, 202

color, 9, 228, 304 carotenoids, 200 exogenous estrogens, 441 gamma radiation, effect on, 180 linseed (flax), effect on, 358, 370 measurement of, 183, 443 organic eggs, 202 xanthophyll, 200, 202 concentrations of steroid hormones male vs. female egg, 50 emulsifier, role as, 7 phospholipids as a natural emulsifier, 277 formation and development, 5, 320 fresh egg yolk

scanning electron microscopic photographs, 421 transmission electron microscopic photographs, 421 index, 154, 305 particle destabilization in salted egg, 418 phosvitin binding of iron, 273 proportion of, 5 thickener, role as, 7 total solids, proportion of, 5

Z

Zearalenone, 581, 583, 586, 590 chemical structure of, 584

Index 625

Zeaxanthin, 6, 199, 202 analysis of, 200 contents in eggs/egg yolks/selected high-carotenoid grains, 201 Zebra finch sex ratio bias, effect of corticosterone, 51 Zonotrichia leucophrys (white-crowned sparrow) sex ratio bias, effect of corticosterone, 51 Zoonotic potential avian pathogenic Escherichia coli (APEC), 529 Newcastle disease, 555 Zygadenus spp. (death camus), 500